【題目】閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.
探究一:如圖1,在△ABC中,已知O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90°+ ∠A,理由如下:
∵BO和CO分別是∠ABC與∠ACB的平分線,
∴∠1= ∠ABC,∠2= ∠ACB;
∴∠1+∠2= (∠ABC+∠ACB)= (180°﹣∠A)=90°﹣ ∠A,
∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣ ∠A)=90°+ ∠A.
(1)探究二:如圖2中,已知O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?并說明理由.
(2)探究二:如圖3中,已知O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?
【答案】
(1)解:探究2結(jié)論:∠BOC= ∠A.
理由如下:∵BO和CO分別是∠ABC和∠ACD的角平分線,
∴∠1= ∠ABC,∠2= ∠ACD,
又∵∠ACD是△ABC的一個外角,
∴∠2= ∠ACD= (∠A+∠ABC)= ∠A+∠1,
∵∠2是△BOC的一個外角,
∴∠BOC=∠2﹣∠1= ∠A+∠1﹣∠1= ∠A,
即∠BOC= ∠A
(2)解:由三角形的外角性質(zhì)和角平分線的定義,∠OBC= (∠A+∠ACB),∠OCB= (∠A+∠ABC),
在△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣ (∠A+∠ACB)﹣ (∠A+∠ABC),
=180°﹣ (∠A+∠ACB+∠A+∠ABC),
=180°﹣ (180°+∠A),
=90°﹣ ∠A
【解析】(1)根據(jù)角平分線的定義可得∠1= ∠ABC,∠2= ∠ACD,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和和角平分線的定義可得∠2= ∠ACD= (∠A+∠ABC),∠BOC=∠2﹣∠1,然后整理即可得解;(2)根據(jù)三角形的外角性質(zhì)以及角平分線的定義表示出∠OBC和∠OCB,再根據(jù)三角形的內(nèi)角和定理解答.
【考點精析】本題主要考查了三角形的內(nèi)角和外角和三角形的外角的相關(guān)知識點,需要掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】為了倡導節(jié)能低碳的生活,某公司對集體宿舍用電收費作如下規(guī)定:一間宿舍一個月用電量不超過a千瓦時,則一個月的電費為20元;若超過a千瓦時,則除了交20元外,超過部分每千瓦時要交元。某宿舍3月份用電80千瓦時,交電費35元;4月份用電45千瓦時,交電費20元。
(1)求a的值;
(2)若該宿舍5月份交電費45元,那么該宿舍當月用電量為多少千瓦時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗媽媽在網(wǎng)上做淘寶生意,專門銷售女式鞋子,一次,小麗發(fā)現(xiàn)一個進貨單上的一個信息是:A款鞋的進價比B款鞋進價多20元,花500元進A款鞋的數(shù)量和花400元進B款鞋的數(shù)量相同.
(1)問A、B款鞋的進價分別是多少元?
(2)小麗在銷售單上記錄了兩天的數(shù)據(jù)如表:
日期 | A款女鞋銷量 | B款女鞋銷量 | 銷售總額 |
6月1日 | 12雙 | 8雙 | 2240元 |
6月2日 | 8雙 | 10雙 | 1960元 |
請問兩種鞋的銷售價分別是多少?
(3)小麗媽媽說:“兩款鞋的利潤率相同”,請通過計算,結(jié)合(1)(2)所給信息,判斷小麗媽媽的說法是否正確,如果正確,請說明理由;如果錯誤,能否只調(diào)整其中一款的售價,使得兩款鞋的利潤率相同?能否同時調(diào)整兩款的售價,使得兩款鞋的利潤率相同?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年四月北京很多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其擾。據(jù)測定,楊絮纖維的直徑約為0.000 010 5米,將0.000 010 5用科學記數(shù)法可表示為( )
A.1.05×105
B.1.05×10-5
C.0.105×10-4
D.10.5×10-6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)若AC與BD相交于點O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則△BDE中BD邊上的高為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com