【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=7,點D在邊BC上,CD=3,⊙A的半徑長為3,⊙D與⊙A相交,且點B在⊙D外,那么⊙D的半徑長r的取值范圍是( )

A.1<r<4
B.2<r<4
C.1<r<8
D.2<r<8

【答案】B
【解析】解:連接AD,
∵AC=4,CD=3,∠C=90°,
∴AD=5,
∵⊙A的半徑長為3,⊙D與⊙A相交,
∴r>5﹣3=2,
∵BC=7,
∴BD=4,
∵點B在⊙D外,
∴r<4,
∴⊙D的半徑長r的取值范圍是2<r<4,
故選B.

【考點精析】解答此題的關(guān)鍵在于理解點和圓的三種位置關(guān)系的相關(guān)知識,掌握圓和點的位置關(guān)系:以點P與圓O的為例(設(shè)P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r,以及對圓與圓的位置關(guān)系的理解,了解兩圓之間有五種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個公共點的叫相交.兩圓圓心之間的距離叫做圓心距.兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD平分∠BAC,EGADH,則下列等式中成立的是 ( )

A. α=β﹣γ) B. α=β+γ) C. G=β+γ) D. G=α

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABF≌△CDE.

(1)若∠B=30°,∠DCF=40°,求∠EFC的度數(shù);

(2)若BD=10,EF=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m,求這塊草坪的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某建筑物BC頂部有一旗桿AB,且點A,B,C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,ADBCD,DEACE,DFABACF,連接EF。

(1)當ABC滿足什么條件時,四邊形AEDF是矩形;

(2)當ABC滿足什么條件時,四邊形AEDF是正方形,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結(jié)BF交AC于點M,連結(jié)DE、BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④SAOE:SBCM=2:3.其中正確結(jié)論的個數(shù)是( 。
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】坐標平面上,某個一次函數(shù)的圖形通過(5,0)、(10,﹣10)兩點,判斷此函數(shù)的圖形會通過下列哪一點?(  )
A.( ,9
B.( ,9
C.( ,9
D.( ,9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ ABC 是等腰三角形,CA=CB,0°<∠ACB≤90°,點 M 在邊 AC 上,點 N在邊 BC 上(點 M、點 N 不與所在線段端點重合),BN=AM,連接 AN,BM.射線 AG∥BC,延長 BM 交射線 AG 于點 D,點 E 在直線 AN 上,且 AE=DE.

(1)如圖,當∠ACB=90°時,

①求證:△ BCM≌△ACN;

②求∠BDE 的度數(shù);

(2)當∠ACB=ɑ ,其它條件不變時,∠BDE 的度數(shù)是 (用含ɑ 的代數(shù)式表示).

(3)若△ ABC 是等邊三角形,AB=3,點 N BC 邊上的三等分點,直線 ED 與直線 BC 交于點 F,請直接寫出線段 CF 的長.

查看答案和解析>>

同步練習冊答案