【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,ADCD于點(diǎn)D.AC平分∠DAO,EAB延長線上一點(diǎn),CE交⊙O于點(diǎn)F,連接OC,AC.

(1)求證:CD是⊙O的切線;

(2)若∠DAO=105°,E=30°.

①求∠OCE的度數(shù);②若⊙O的半徑為2,求線段EF的長.

【答案】(1)詳見解析;(2)2-2.

【解析】

(1)由切線性質(zhì)知OC⊥CD,結(jié)合AD⊥CDAD∥OC,即可知∠DAC=∠OCA=∠OAC,從而得證;

(2)①由AD∥OC知∠EOC=∠DAO=105°,結(jié)合∠E=30°可得答案;

②作OG⊥CE,根據(jù)垂徑定理及等腰直角三角形性質(zhì)知CG=FG=OG,由OC=2得出CG=FG=OG=2,在Rt△OGE中,由∠E=30°可得答案.

1)∵CD是⊙O的切線,

OCCD,

ADCD

ADOC,

∴∠DAC=OCA,

OC=OA,

∴∠OCA=OAC,

∴∠OAC=DAC

AC平分∠DAO;

2)①∵ADOC

∴∠EOC=DAO=105°

∵∠E=30°,

∴∠OCE=45°;

②作OGCE于點(diǎn)G

CG=FG=OG,

OC=2,∠OCE=45°,

CG=OG=2,

FG=2,

RtOGE中,∠E=30°

GE=2,

EFGEFG22

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以銳角ABC的邊AC、AB為邊向外作正方形ACDE和正方形ABGF,連結(jié)BE、CF.

1)你能找到哪兩個(gè)圖形可以通過旋轉(zhuǎn)而相互得到,并指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.

2)試探索BECF有什么數(shù)量關(guān)系和位置關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知 A-2,0),B0,m)兩點(diǎn),且線段AB= 2 ,以 AB 為邊在第二象限內(nèi)作正方形 ABCD。

1)求點(diǎn) B 的坐標(biāo)

2)在 x 軸上是否存在點(diǎn) Q,使QAB 是以 AB 為腰的等腰三角形?若存在,請直接寫出點(diǎn) Q 的坐標(biāo),若不存在,請說明理由;

3)如果在坐標(biāo)平面內(nèi)有一點(diǎn) Pa,3),使得ABP 的面積與正方形 ABCD 的面 積相等,求 a 的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三個(gè)頂點(diǎn)在邊長為1的正方形網(wǎng)格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).

(1)畫出△ABC及關(guān)于y軸對稱的△A1B1C1;

(2)寫出點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo),點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo),點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo);

(3)請直接寫出以AB為邊且與△ABC全等的三角形的第三個(gè)頂點(diǎn)(不與C重合)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖,反比例函數(shù)的圖象經(jīng)過點(diǎn)A(1,4),直線y=2x+bb≠0)與雙曲線在第一三象限分別相交于P,Q兩點(diǎn),x、y軸分別相交于CD兩點(diǎn).(1)求k的值;(2)當(dāng)b=-3時(shí)求△OCD的面積;

(3)連接OQ,是否存在實(shí)數(shù)b,使得SODQ=SOCD?若存在,請求出b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,同底數(shù)冪的乘法法則為am·an=am+n(其中a≠0 ,m、n為正整數(shù)),類似地我們規(guī)定關(guān)于任意正整數(shù)m、n的一種新運(yùn)算:hm+n=hm·hn);比如h2=3,則h4=h2+2=3×3=9,若h2=kk≠0 ),那么h2n·h2020)的結(jié)果是(

A.2k+2020B.2k+1010C.kn+1010D.1022k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角△BAD中延長斜邊BD到點(diǎn)C,使,若,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在邊AD上,點(diǎn)F在邊BC的延長線上,連接EF與邊CD相交于點(diǎn)G,連接BE與對角線AC相交于點(diǎn)H, AE=CF,BE=EG。

(1)求證:EF//AC;

(2)∠BEF大;

(3)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)在同一線路上順次有三個(gè)景點(diǎn)A,B,C,甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙花20分鐘時(shí)間排隊(duì)后乘觀光車先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C.甲、乙兩人離景點(diǎn)A的路程s(米)關(guān)于時(shí)間t(分鐘)的函數(shù)圖像如圖所示.

(1)甲的速度是 米/分鐘;

(2)當(dāng)20≤t ≤30時(shí),求乙離景點(diǎn)A的路程s與t的函數(shù)表達(dá)式;

(3)乙出發(fā)后多長時(shí)間與甲在途中相遇?

(4)若當(dāng)甲到達(dá)景點(diǎn)C時(shí),乙與景點(diǎn)C的路程為360米,則乙從景點(diǎn)B步行到景點(diǎn)C的速度是多少?

查看答案和解析>>

同步練習(xí)冊答案