【題目】如圖,∠AOB=40°,點P在∠AOB的內部,點C,D分別是點P關于直線OA,OB的對稱點,連接CD分別交OA,OB于點E、F.則∠EPF=___________.
【答案】100°
【解析】
根據(jù)線段垂直平分線的性質可得CE=PE,PF=FD,進而推出角的關系∠PEF=2∠C,∠PFE=2∠D,結合已知條件利用四邊形的內角和得出∠AOB+∠MPN=180°,在△PEF中可得∠EPF+2∠C+2∠D=180°,即可得出答案.
∵點C,D分別是點P關于直線OA,OB的對稱點
∴CE=PE,PF=FD
∴∠PEF=2∠C,∠PFE=2∠D
∠PME=∠PNF=90°
在四邊形OMPN中
∴∠AOB+∠MPN=180°
∵∠EPF+2∠C+2∠D=180°
∴∠MPN+∠C+∠D=180°
∴∠C+∠D=∠AOB=40°
∴∠EPF=100°
故答案為:100°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知等邊△ABC中,D是AC的中點,E是BC延長線上的一點,且CE=CD,DM⊥BC,垂足為M.
(1)求∠E的度數(shù).
(2)求證:M是BE的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,A(0,3)、B(3,0)、C(﹣3,0).
(1)過B作直線MN⊥AB,P為線段OC上的一動點,AP⊥PH交直線M于點H,證明:PA=PH.
(2)在(1)的條件下,若在點A處有一個等腰Rt△APQ繞點A旋轉,且AP=PQ,∠APQ=90°,連接BQ,點G為BQ的中點,試猜想線段OG與線段PG的數(shù)量關系與位置關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD, BE的延長線交AD于F.
(1)猜想線段BE、AD的數(shù)量關系和位置關系:_______________(不必證明);
(2)當點E為△ABC內部一點時,使點D和點E分別在AC的兩側,其它條件不變.
①請你在圖2中補全圖形;
②(1)中結論成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,點、分別在、上,連接,、的平分線交于點,、的平分線交于點.
求證:四邊形是矩形.
小明在完成的證明后繼續(xù)進行了探索,過點作,分別交、于點、,過點作,分別交、于點、,得到四邊形.此時,他猜想四邊形是菱形.請在下列框圖中補全他的證明思路.
小明的證明思路:由,,易證,四邊形是平行四邊形.要證□是菱形,只要證.由已知條件________,,可證,故只要證,即證,易證________,________,故只要證,易證,,________,故得,即可得證.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,,點是對角線上的動點(不與、重合),設,.
求與的函數(shù)解析式,并指出的取值范圍;
連接,當是等腰三角形時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°AB的中垂線DE交AC于D,交AB于E,下述結論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BCD的周長等于AB+BC;(4)D是AC中點其中正確的命題序號是_________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個正整數(shù)能表示為兩個連續(xù)偶數(shù)的平方差,那么稱這個正整數(shù)為“神秘數(shù)”.
如:,,,因此,,這三個數(shù)都是神秘數(shù).
(1)是神秘數(shù)嗎?為什么?
(2)設兩個連續(xù)偶數(shù)為和(其中取非負整數(shù)),由這兩個連續(xù)偶數(shù)構造的神秘數(shù)是的倍數(shù)嗎?為什么?
(3)①若長方形相鄰兩邊長為兩個連續(xù)偶數(shù),試說明其周長一定為神秘數(shù).
②在①的條件下,面積是否為神秘數(shù)?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com