【題目】反證法證明“三角形中至少有一個(gè)角不少于60°”先應(yīng)假設(shè)這個(gè)三角形中________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠一月份生產(chǎn)某機(jī)器100臺(tái),計(jì)劃三月份生產(chǎn)160臺(tái).設(shè)二、三月份每月的平均增長(zhǎng)率為x,根據(jù)題意列出的方程是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個(gè)外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.
探究二:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF(圖4)呢?
請(qǐng)直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,A、B、C、D四點(diǎn)共圓,過點(diǎn)C的切線CE∥BD,與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:∠BAC=∠CAD;
(2)如圖②,若AB為⊙O的直徑,AD=6,AB=10,求CE的長(zhǎng);
(3)在(2)的條件下,連接BC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,則BE與DF有何位置關(guān)系?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中E是BC上的一點(diǎn),EC=2BE,點(diǎn)D是AC的中點(diǎn),設(shè)△ABC,△ADF,△BEF的面積分別為S△ABC,S△ADF,S△BEF,且S△ABC=12,則S△ADF﹣S△BEF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】揚(yáng)州某樓盤準(zhǔn)備以每平方米的10000元均價(jià)銷售,經(jīng)過兩次下調(diào)后,決定以每平方米8600元的均價(jià)開盤.若設(shè)平均每次下調(diào)的百分率為x,則可列方程________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為5,⊙O的圓心為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,4),則點(diǎn)A與⊙O的位置關(guān)系是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n為整數(shù),下列式子中表示偶數(shù)的是( ).
A. 2n B. 2n+1 C. 2n-1 D. n+2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com