【題目】已知如圖,拋物線的頂點D的坐標(biāo)為(1,-4),且與y軸交于點

C0,3

求該函數(shù)的關(guān)系式;

求改拋物線與x軸的交點A,B的坐標(biāo).

【答案】1

2A3,0),B-1,0.

【解析】試題分析:1)由拋物線的頂點D的坐標(biāo)為(1-4),可設(shè)拋物線的函數(shù)關(guān)系式為y=ax-12-4,再將C0,-3)代入求解即可;

2y=0代入(1)中所求解析式,得到x2-2x-3=0,解方程求出x的值,進(jìn)而得到拋物線與x軸的交點AB的坐標(biāo)

試題解析:1∵拋物線的頂點D的坐標(biāo)為(1,4),

∴設(shè)拋物線的函數(shù)關(guān)系式為y=a(x1)24,

又∵拋物線過點C(0,3)

3=a(01)24,

解得a=1

∴拋物線的函數(shù)關(guān)系式為y=(x1)24,

y=x22x3;

2)令y=0x2,

解得, .

所以坐標(biāo)為A3,0),B-10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一塊長方形鏡面玻璃的四周,鑲上與它的周長相等的邊框,制成一面鏡子.鏡子的長與寬的比是3:1.已知鏡面玻璃的價格是每平方米100元,邊框的價格是每米20元,另外制作這面鏡子還需加工費55元.如果制作這面鏡子共花了210元,求這面鏡子的長是__________,寬是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格中,OAB 的頂點坐標(biāo)分別為 O0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),O1A1B1 OAB 是以點 P 為位似中心的位似圖形

1)位似中心 P 的坐標(biāo)是 ,O1A1B1OAB 的相似比為

2)以原點 O 為位似中心, y 軸的左側(cè)畫出OAB 的另一個位似三角形,使它與OAB 的相似比為 21,并寫出點 B 的對應(yīng)點的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC的邊長是2,D、E分別為AB、AC的中點,過點EEFCDBC的延長線于點F,連接CD

1)求證:DECF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的對角線相交于點,點為邊的中點.若菱形的周長為16,,則的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.

(1)若已知k=1,且噴出的拋物線水線最大高度達(dá)3m,求此時a、b的值;

(2)若k=1,噴出的水恰好達(dá)到岸邊,則此時噴出的拋物線水線最大高度是多少米?

(3)若k=3,a=﹣,則噴出的拋物線水線能否達(dá)到岸邊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α45°,旗桿低端D到大樓前梯坎底邊的距離DC20米,梯坎坡長BC12米,梯坎坡度i=1: ,則大樓AB的高度為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是半徑為的⊙的直徑, 是圓上異于, 的任意一點, 的平分線交⊙于點,連接,△的中位線所在的直線與⊙相交于點、,則的長是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(x–2)(x–3)=m有實數(shù)根x1、x2,且x1<x2,則下列結(jié)論中錯誤的是

A. 當(dāng)m=0時,x1=2,x2=3

B. m>–

C. 當(dāng)m>0時,2<x1<x2<3

D. 二次函數(shù)y=(xx1)(xx2)+m的圖象與x軸交點的坐標(biāo)為(2,0)和(3,0)

查看答案和解析>>

同步練習(xí)冊答案