如圖,已知點A(tanα,0),B(tanβ,0)在x軸正半軸上,點A在點B的左邊,α、β是以線段AB為斜邊、頂點C在x軸上方的Rt△ABC的兩個銳角.
(1)若二次函數(shù)y=-x2-kx+(2+2k-k2)的圖象經過A、B兩點,求它的解析式;
(2)點C在(1)中求出的二次函數(shù)的圖象上嗎?請說明理由.
【答案】分析:(1)在Rt△ABC中,由于∠α+∠β=90°,因此tanα•anβ=1,而A、B是拋物線與x軸的交點,根據(jù)韋達定理可得出tanα•tanβ=-(2+2k-k2)=1,據(jù)此可求出k的值,然后根據(jù)tanα+tanβ>0,將不合題意的k值舍去,即可求出拋物線的解析式.
(2)本題的關鍵是求出C點坐標,根據(jù)(1)可求出tanα、tanβ的值,以及A、B的坐標,過C作CD⊥AB,可在直角三角形ACD中,用tanα和CD表示出AD,同理可表示出BD的長,根據(jù)A、B的坐標可得出AB的長,根據(jù)AD+BD=AB即可求出CD的長,進而可求出AD和OD的長,即可得出C點坐標,代入拋物線的解析式中進行判斷即可.
解答:解:(1)∵α、β是Rt△ABC的兩個銳角,
∴tanα•tanβ=1,tanα>0,tanβ>0,
由題意,知tanα,tanβ是方程-x2-kx+(2+2k-k2)=0的兩個根.
∴tanα•tanβ=-(2+2k-k2)=k2-2k-2=1,
∴k2-2k-2=1,
解得,k=3或k=-1;
而tanα+tanβ=-k>0.
∴k<0.
∴k=3(舍去),k=-1.
故所求的二次函數(shù)的解析式為y=-x2+x-1.

(2)不存在.
過C作CD⊥AB于D.
令y=0,得-x2+x-1=0.
解得x1=,x2=2.
∴A(,0),B(2,0),AB=
∴tanα=,tanβ=2.
設CD=m,則有CD=AD•tanα=AD,
∴AD=2CD.
又∵CD=BD•tanβ=2BD,
∴BD=CD,
∴2m+m=,
∴m=,
∴AD=
∴C(),
當x=時,y=
∴點C不在(1)求出的二次函數(shù)的圖象上.
點評:本題以二次函數(shù)為背景,考查了三角函數(shù)、韋達定理等相關知識點.綜合性較強,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:中考數(shù)學專項練習 題型:044

已知:如圖,⊙與⊙內切于點T,⊙的弦TA、TB交⊙于點C和D,若DC=5,,求AB的長.

查看答案和解析>>

同步練習冊答案