【題目】如圖是某晚報“百姓熱線”一周內(nèi)接到熱線電話的統(tǒng)計圖,其中有關(guān)環(huán)境保護(hù)問題的電話最多,共70個,請回答下列問題:
(1)本周“百姓熱線”共接到熱線電話多少個?
(2)有關(guān)道路交通問題的電話多少個?
(3)計算其他各類電話的個數(shù).
【答案】(1) 本周“百姓熱線”共接到熱線電話200個;(2) 有關(guān)道路交通問題的電話40個;(3)見解析
【解析】
(1)根據(jù)其中有關(guān)環(huán)境保護(hù)問題最多,共有70個,占35%,已知部分求全體,用除法,即可求解;
(2)根據(jù)已知全體求部分,用乘法,即200×20%=40個;
(3)先求出每一個項目所對應(yīng)的圓心角度數(shù),然后畫出扇形圖即可.
(1)70÷35%=200(個),
答:本周“百姓熱線”共接到熱線電話200個;
(2)200×20%=40(個),
答:有關(guān)道路交通問題的電話40個;
(3)360°×5%=18°,360°×10%=36°,360°×15%=54°,360°×20%=72°,360°×35%=126°,
畫扇形圖如圖所示:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù)的圖象分別與x軸、y軸相交于點A、B,且與經(jīng)過點C(2,0)的一次函數(shù)y=kx+b的圖象相交于點D,點D的橫坐標(biāo)為4,直線CD與y軸相交于點E.
(1)直線CD的函數(shù)表達(dá)式為 ;(直接寫出結(jié)果)
(2)點Q為線段DE上的一個動點,連接BQ.
①若直線BQ將△BDE的面積分為1:2兩部分,試求點Q的坐標(biāo);
②將△BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的坐標(biāo)軸上,請直接寫出點Q的坐標(biāo): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點A(x1 , y1)和B(x2 , y2)是反比例函數(shù)y= 圖象上的兩個點,當(dāng)x1<x2<0時,y1<y2 , 則一次函數(shù)y=﹣2x+k的圖象不經(jīng)過的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面材料:已知點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為|AB|.
當(dāng)A、B兩點中有一點在原點時,不妨設(shè)點A在原點,如圖1,|AB|=|OB|=|b|=|a﹣b|
當(dāng)A、B兩點都不在原點時,
(1)如圖2,點A、B都在原點的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
(2)如圖3,點A、B都在原點的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|
(3)如圖4,點A、B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|
綜上,數(shù)軸上A、B兩點的距離|AB|=|a﹣b|
回答下列問題:
(1)數(shù)軸上表示﹣2和﹣5兩點之間的距離是多少;
(2)數(shù)軸上表示x和﹣1的兩點A、B之間的距離是|x+1|,如果|AB|=2,那么x為多少;
(3)當(dāng)代數(shù)式|x+1|+|x﹣2|取最小值時,寫出相應(yīng)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c與y軸交于點C(0,﹣4),與x軸交于點A,B,且B點的坐標(biāo)為(2,0).
(1)求該拋物線的解析式.
(2)若點P是AB上的一動點,過點P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值.
(3)若點D為OA的中點,點M是線段AC上一點,且△OMD為等腰三角形,求M點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點,則MC2-MB2等于( )
A. 9 B. 35 C. 45 D. 無法計算
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90,AB=AC.點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側(cè)作等腰直角三角形ADE,使DAE=90,連結(jié)CE.
探究:如圖①,當(dāng)點D在線段BC上時,證明BC=CE+CD.
應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長為_______.
拓展:(1)如圖②,當(dāng)點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為_______.
(2)如圖③,當(dāng)點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com