【題目】我們將在直角坐標系中圓心坐標和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:與x軸、y軸分別交于A、B,∠OAB=30°,點P在x軸上,⊙P與l相切,當P在線段OA上運動時,使得⊙P成為整圓的點P個數(shù)是( 。

A.6
B.8
C.10
D.12

【答案】A
【解析】解:∵直線l:y=kx+4與x軸、y軸分別交于A、B,
∴B(0,4),
∴OB=4
在RT△AOB中,∠OAB=30°,
∴OA=OB=×=12,
∵⊙P與l相切,設切點為M,連接PM,則PM⊥AB,
∴PM=PA,
設P(x,0),
∴PA=12﹣x,
∴⊙P的半徑PM=PA=6﹣x,
∵x為整數(shù),PM為整數(shù),
∴x可以取0,2,4,6,8,10,6個數(shù),
∴使得⊙P成為整圓的點P個數(shù)是6.
故選:A.

根據(jù)直線的解析式求得OB=4 , 進而求得OA=12,根據(jù)切線的性質求得PM⊥AB,根據(jù)∠OAB=30°,求得PM=PA,然后根據(jù)“整圓”的定義,即可求得使得⊙P成為整圓的點P的坐標,從而求得點P個數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AB=2,點D為邊AB上一點,過點D作DE∥AC,交BC于E點;過E點作EF⊥DE,交AB的延長線于F點.設AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E、F分別是AB、DC邊上的點,且AE=CF,

(1)求證:△ADE≌△CBF.
(2)若∠DEB=90°,求證:四邊形DEBF是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O是以AB為直徑的△ABC的外接圓,OD∥BC交⊙O于點D,交AC于點E,連接AD、BD,BD交AC于點F.

(1)求證:BD平分∠ABC;
(2)延長AC到點P,使PF=PB,求證:PB是⊙O的切線;
(3)如果AB=10,cos∠ABC=,求AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=,有以下的結論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或;④0<BE≤,其中正確的結論是 (填入正確結論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CO⊥AB于O,D在⊙O上,連接BD,CD,延長CD與AB的延長線交于E,F(xiàn)在BE上,且FD=FE.

(1)求證:FD是⊙O的切線;
(2)若AF=8,tan∠BDF=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點.

(1)如圖1,求⊙O的半徑;
(2)如圖1,若點E是BC的中點,連接PE,求PE的長度;
(3)如圖2,若點M是BC邊上任意一點(不含B、C),以點M為直角頂點,在BC的上方作∠AMN=90°,交直線CP于點N,求證:AM=MN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自從2012年12月4日中央公布“八項規(guī)定”以來,我市某中學積極開展“厲行勤儉節(jié)約,反對鋪張浪費”的活動.為此,校學生會在全校范圍內隨機抽取了若干名學生就某日晚飯浪費飯菜情況進行調查,調查內容分為四種:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.學生會根據(jù)統(tǒng)計結果繪制了如下統(tǒng)計表和統(tǒng)計圖,根據(jù)所提供的信息回答下列問題:

選項

頻數(shù)

頻率

A

30

M

B

n

0.2

C

5

0.1

D

5

0.1


(1)這次被抽查的學生有多少人?
(2)求表中m,n的值,并補全條形統(tǒng)計圖;
(3)該中學有學生2200名,請估計這餐晚飯有剩飯的學生人數(shù),按平均每人剩10克米飯計算,這餐晚飯將浪費多少千克米飯?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.

(1)(1)求EG:BG的值;
(2)(2)求證:AG=OG;
(3)(3)設AG=a,GH=b,HO=c,求a:b:c的值.

查看答案和解析>>

同步練習冊答案