【題目】如圖,△ACB和△ECD都是等腰直角三角形,A、C、D三點在同一直線上,連接BD、AE,并延長AE交BD于F.
(1)求證:AE=BD;
(2)試判斷直線AE與BD的位置關(guān)系,并證明你的結(jié)論.
【答案】(1)證明見解析;(2)互相垂直,證明見解析.
【解析】
(1)根據(jù)SAS判定△ACE≌△BCD,從而得到AE=BD;
(2)互相垂直,只要證明∠AFD=90°,從而轉(zhuǎn)化為證明∠EAC+∠CDB=90°即可.
(1)證明:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,CE=CD,∠ACE=∠BCD=90°,
在△ACE和△BCD,
∴△ACE≌△BCD(SAS)
∴AE=BD;
(2)答:直線AE與BD互相垂直,理由為:
證明:∵△ACE≌△BCD,
∴∠EAC=∠DBC,
又∵∠DBC+∠CDB=90°,
∴∠EAC+∠CDB=90°,
∴∠AFD=90°,
∴AF⊥BD,
即直線AE與BD互相垂直.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC⊥CD,將線段AD繞點D按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)后交AC于點E,交BC于點F.
(1)若∠CAD=30°,線段AD繞點D按逆時針方向旋轉(zhuǎn)45°,且CE=1,求AD;
(2)若∠CAD=45°,線段AD繞點D按逆時針方向旋轉(zhuǎn)30°,點M是線段DF上任意一點(M不與D重合),連接CM,將線段CM繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CN,連接AN交射線DE于點P,點G、H分別是AD、DE的中點,求證:CD=CE+2CP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長率為x.
(1)則今年南瓜的種植面積為 畝;(用含x的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長率是種植面積的增長率的,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN經(jīng)過正方形ABCD的頂點D且不與正方形的任何一邊相交,AM⊥MN于M,CN⊥MN于N,BR⊥MN于R。
(1)求證:△ADM≌△DCN
(2)求證:MN=AM+CN
(3)試猜想BR與MN的數(shù)量關(guān)系,并證明你的猜想
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,平分,以為頂點作,交于點,于點E.
(1)求證:;
(2)圖1中,若,求的長;
(3)如圖2,,平分,以為頂點作,交于點,于點.若,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C、A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設(shè)P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地相距l 100米,甲從A地出發(fā),乙從B地出發(fā),相向而行,甲比乙先出發(fā)2分鐘,乙出發(fā)7分鐘后與甲相遇,設(shè)甲、乙兩人相距y米,甲行進的時間為t分鐘,y與t之間的函數(shù)關(guān)系如圖所示.請你結(jié)合圖象探究:
(1)甲的行進速度為每分鐘__________米,m =____分鐘;
(2)求直線PQ對應(yīng)的函數(shù)表達式;
(3)求乙的行進速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com