【題目】某電視臺(tái)“走基層”欄目的一位記者乘汽車赴360km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時(shí)間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是【 】
(A)汽車在高速公路上的行駛速度為100km/h
(B)鄉(xiāng)村公路總長(zhǎng)為90km
(C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h
(D)該記者在出發(fā)后4.5h到達(dá)采訪地
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩數(shù)學(xué)興趣小組測(cè)量山CD 的高度. 甲小組在地面A處測(cè)量,乙小組在上坡B處測(cè)量,AB=200 m. 甲小組測(cè)得山頂D的仰角為45°,山坡B處的仰角為30°;乙小組測(cè)得山頂D 的仰角為58°. 求山CD的高度(結(jié)果保留一位小數(shù)).參考數(shù)據(jù):,,供選用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,D是BC的中點(diǎn),DE⊥AB, DF⊥AC,垂足分別是E,F(xiàn).
(1)證明:DE=DF;
(2)只添加一個(gè)條件,使四邊形EDFA是正方形.并證明結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在 ABC 中, ACB 90, B 60, BC 2 ,MON 30.
(1)如圖 1, MON 的邊 MO ⊥ AB ,邊 ON 過(guò)點(diǎn) C ,求 AO 的長(zhǎng);
(2)如圖 2,將圖 1 中的 MON 向右平移,MON 的兩邊分別與 ABC 的邊 AC 、BC
相交于點(diǎn) E 、 F ,連接 EF ,若 OEF 是直角三角形,求 AO 的長(zhǎng);
(3)在(2)的條件下,MON 與 ABC 重疊部分面積是否存在最大值,若存在,求出 最大值,若不存在,請(qǐng)說(shuō)明理由.
圖 1 圖 2 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,AB=10,∠ABC=60°,以AB為直徑作⊙O,邊CD切⊙O于點(diǎn)E.
(1)圓心O到CD的距離是______;
(2)求由弧AE、線段AD、DE所圍成的陰影部分的面積.(結(jié)果保留π和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AE,AB⊥AE,AD=AC,AD⊥AC,點(diǎn)M為BC的中點(diǎn),
求證:DE=2AM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角三角形中,兩直角邊的平方和等于斜邊的平方.如圖1,若在△ABC中,∠C=90°,則AC2+BC2=AB2.我們定義為“商高定理”.
(1)如圖1,在△ABC中,∠C=90°中,BC=4,AB=5,試求AC=__________;
(2)如圖2,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)O,AC⊥BD.試證明:AB2+CD2=AD2+BC2;
(3)如圖3,分別以Rt△ACB的直角邊BC和斜邊AB為邊向外作正方形BCFG和正方形ABED,連結(jié)CE、AG、GE.已知BC=4,AB=5,求GE2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC中,AB=AC,D是BC上一點(diǎn),點(diǎn)E、F分別在AB、AC上,BD=CF,CD=BE,G為EF的中點(diǎn).
求證:(1)△BDE≌△CFD(2)DG⊥EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com