【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
【答案】(1)-2;(2)2.
【解析】
(1)利用判別式的意義得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范圍,再在此范圍內(nèi)找出最小整數(shù)值即可;
(2)利用根與系數(shù)的關(guān)系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接著解關(guān)于m的方程,然后利用(1)中m的范圍確定m的值.
(1)根據(jù)題意得△=(2m+1)2﹣4(m2﹣2)≥0,
解得m≥﹣,
所以m的最小整數(shù)值為﹣2;
(2)根據(jù)題意得x1+x2=﹣(2m+1),x1x2=m2﹣2,
∵(x1﹣x2)2+m2=21,
∴(x1+x2)2﹣4x1x2+m2=21,
∴(2m+1)2﹣4(m2﹣2)+m2=21,
整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,
∵m≥﹣,
∴m的值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng),為了吸引顧客,在“白色情人節(jié)”當(dāng)天舉辦了商品有獎(jiǎng)酬賓活動(dòng),凡購(gòu)物滿200元者,有兩種獎(jiǎng)勵(lì)方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎(jiǎng)的機(jī)會(huì).已知在搖獎(jiǎng)機(jī)內(nèi)裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,搖獎(jiǎng)?wù)弑仨殢膿u獎(jiǎng)機(jī)內(nèi)一次連續(xù)搖出兩個(gè)球,根據(jù)球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請(qǐng)你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當(dāng)天在本店購(gòu)物滿200元,若只考慮獲得最多的禮品券,請(qǐng)你幫助分析選擇哪種方案較為實(shí)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是直線CD上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)求PE的長(zhǎng)最大時(shí)m的值.
(3)Q是平面直角坐標(biāo)系內(nèi)一點(diǎn),在(2)的情況下,以PQCD為頂點(diǎn)的四邊形是平行四邊形是否存在?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) E 是△ABC 的內(nèi)心,AE 的延長(zhǎng)線和△ABC 的外接圓相交于點(diǎn) D,連 接 BE
(1) 若∠CBD=35°,求∠BAC 及∠BEC 的度數(shù)
(2) 求證:DE=DB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:矩形ABCD中AB=2,BC= ,⊙A是以A為圓心,半徑r=1的圓,若⊙A繞著點(diǎn)B順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α( 0°<α<180°);當(dāng)旋轉(zhuǎn)后的圓與矩形ABCD的邊相切時(shí),α=________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖,則下列結(jié)論:①abc>0;②a+b+c=2;③b2﹣4ac<0;④b<2a.其中正確的結(jié)論是( )
A. ①② B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形中,,,含角()的直角三角板(如圖)在圖中平移,直角邊,頂點(diǎn)、分別在邊、上,延長(zhǎng)到點(diǎn),使,若,,則點(diǎn)從點(diǎn)平移到點(diǎn)的過程中,點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點(diǎn)E在弧AD上,射線AE與CD的延長(zhǎng)線交于點(diǎn)F.
(1)求圓O的半徑;
(2)如果AE=6,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求當(dāng)10≤t≤30時(shí),R和t之間的關(guān)系式;
(2)求溫度在30℃時(shí)電阻R的值;并求出t≥30時(shí),R和t之間的關(guān)系式;
(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過6 kΩ?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com