【題目】若順次連接四邊形ABCD各邊中點所得四邊形是矩形,則四邊形ABCD必然是( )
A.菱形
B.對角線相互垂直的四邊形
C.正方形
D.對角線相等的四邊形

【答案】B
【解析】解:已知:如圖,四邊形EFGH是矩形,且E、F、G、H分別是AB、BC、CD、AD的中點,

求證:四邊形ABCD是對角線垂直的四邊形.

證明:由于E、F、G、H分別是AB、BC、CD、AD的中點,

根據(jù)三角形中位線定理得:EH∥FG∥BD,EF∥AC∥HG;

∵四邊形EFGH是矩形,即EF⊥FG,

∴AC⊥BD;故答案為:B.

題目中并沒有給出圖,畫圖證明進(jìn)行對題意的分析。
如圖所示,四邊形EFGH是矩形,矩形的性質(zhì)1矩形的四個角都是直角,所以EF⊥FG,再根據(jù)中位線的定義和定理:連接三角形兩邊中點的線段叫做三角形的中位線(定義),三角形的中位線平行第三邊(性質(zhì)),得結(jié)論EF∥AC∥HG,結(jié)合EF⊥FG,根據(jù)兩直線平行,第三條直線垂直于其中一條平行線,那么第三條直線垂直于這兩條平行線,所以AC⊥FG,同理EH∥FG∥BD,所以AC⊥BD。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,不具有穩(wěn)定性的圖形是( )

A. 平行四邊形 B. 等腰三角形 C. 直角三角形 D. 等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了豐富學(xué)生課余生活,決定開設(shè)以下體育課外活動項目:A.版畫  B.保齡球C.航模  D.園藝種植,為了解學(xué)生最喜歡哪一種活動項目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有   人;

(2)請你將條形統(tǒng)計圖(2)補(bǔ)充完整;

(3)在平時的保齡球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加保齡球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是等邊三角形內(nèi)一點,將線段繞點順時針旋轉(zhuǎn)60°得到線段,連接.若,則四邊形的面積為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=x﹣ 與x軸正半軸、y軸負(fù)半軸分別相交于A、C兩點,拋物線y=x2+bx+c經(jīng)過點B(﹣1,0)和點C.

(1)填空:直接寫出拋物線的解析式:_____;

(2)已知點Q是拋物線y=x2+bx+c在第四象限內(nèi)的一個動點.

①如圖,連接AQ、CQ,設(shè)點Q的橫坐標(biāo)為t,△AQC的面積為S,求S與t的函數(shù)關(guān)系式,并求出S的最大值;

②連接BQ交AC于點D,連接BC,以BD為直徑作⊙I,分別交BC、AB于點E、F,連接EF,求線段EF的最小值,并直接寫出此時Q點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是(
A.a2a3=a6
B.a8÷a4=a2
C.a3+a3=2a6
D.(a32=a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣(m+2)x+2m﹣1=0.

(1)求證:此方程有兩個不相等的實數(shù)根;

(2)若拋物線y=x2﹣(m+2)x+2m﹣1=0與x軸有兩個交點都在x軸正半軸上,求m的取值范圍;

(3)填空:若x2﹣(m+2)x+2m﹣1=0的兩根都大于1,則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AOAD的中點,若AB6 cmBC8 cm,則AEF的周長為________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD中,AD=3cm,CD=1cm,∠B=45°,點P從點A出發(fā),沿AD方向勻速運動,速度為3cm/s;點Q從點C出發(fā),沿CD方向勻速運動,速度為1cm/s,連接并延長QP交BA的延長線于點M,過M作MN⊥BC,垂足是N,設(shè)運動時間為t(s)(0<t<1).

(1)當(dāng)t為何值時,四邊形AQDM是平行四邊形?

(2)證明:在P、Q運動的過程中,總有CQ=AM;

(3)是否存在某一時刻t,使四邊形ANPM的面積是平行四邊形ABCD的面積的一半?若存在,求出相應(yīng)的t值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案