【題目】 某校七年級共有男生63名,為了參加全校運動會,七年級準備從本年級所有男生中挑選出身高相差不多的40名男生組成儀仗隊,為此,收集到所有男生的身高數(shù)據(jù)(單位:cm),經(jīng)過整理獲得如下信息:
a.小明把所有男生的身高數(shù)據(jù)按由低到高整理為如下,但因為不小心有部分數(shù)據(jù)被墨跡遮擋:
b.小剛繪制了七年級所有男生身高的頻數(shù)分布表
身高分組 | 劃記 | 頻數(shù) |
149≤x<152 | 丅 | 2 |
152≤x<155 | 正一 | 6 |
155≤x<158 | 正正丅 | 12 |
158≤x<161 | 正正正 | 19 |
161≤x<164 | 正正 | 10 |
164≤x<167 | ______ | ______ |
167≤x<170 | ______ | ______ |
170≤x<173 | 丅 | 2 |
c.該校七年級男生身高的平均數(shù)、中位數(shù)、眾數(shù)如下:
平均數(shù) | 中位數(shù) | 眾數(shù) |
160 | m | n |
根據(jù)以上信息,回答下列問題:
(1)補全b表中頻數(shù)分布表;
(2)直接寫出c表中m,n的值;
(3)借助于已給信息,確定挑選出參加儀仗隊的男生的身高范圍;
(4)若本區(qū)七年級共有男生1260名,利用以上數(shù)據(jù)估計,全區(qū)七年級男生身高達到160及以上的男生約有多少人?
【答案】(1)詳見解析;(2)m=159,n=158;(3)155≤x<164;(4)560
【解析】
(1)根據(jù)小明列舉的數(shù)據(jù)可以確定身高在164≤x<167有10人,167≤x<170有8人,可劃正字,統(tǒng)計頻數(shù),填寫表格;
(2)根據(jù)中位數(shù)、眾數(shù)的意義,結(jié)合小明列出的數(shù)據(jù)確定;
(3)結(jié)合身高的極差要小,人數(shù)要達到40人,及本組數(shù)據(jù)特征,綜合得出結(jié)論;
(4)用樣本估計總體,1260乘以身高達到160及以上的比率.
解:(1)補全b表中頻數(shù)分布表如圖所示:
(2)∵共有63個數(shù)據(jù),從小到大排列后,第32個數(shù)是中位數(shù),
又∵由小明列舉出的數(shù)據(jù),第32個數(shù)是159,
∴因此中位數(shù)是159,故m=159,
∵由小明列舉出的數(shù)據(jù),158出現(xiàn)的次數(shù)最多是8次,
∴眾數(shù)為158,故n=158;
因此,m=159,n=158.
(3)∵身高要求整齊,即極差要小,且人數(shù)要達到40人,
又∵從表格b中可以看出155≤x<164之間的有12+19+10=41人,
∴參加儀仗隊的男生的身高范圍155≤x<164;
(4)區(qū)七年級男生身高達到160及以上的男生約有1260×=560人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是( )
A.1.5B.1.8C.2D.2.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級共有800名學生,準備調(diào)查他們對“低碳”知識的了解程度.
(1)在確定調(diào)查方式時,團委設計了以下三種方案:
方案一:調(diào)查七年級部分女生;
方案二:調(diào)查七年級部分男生;
方案三:到七年級每個班去隨機調(diào)查一定數(shù)量的學生.
請問其中最具有代表性的一個方案是 ;
(2)團委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將兩個統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,“比較了解”所在扇形的圓心角的度數(shù)是 .
(4)請你估計該校七年級約有 名學生比較了解“低碳”知識.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交A(1,4),B(-4,c)兩點,
如圖2所示,點M、N都在直線AB上,過M、N分別作y軸的平行線交雙曲線于E、F,設M、N的橫坐標分別為m、n,且 4 < m < 0 , n > 1 ,請?zhí)骄?/span>,當m、n滿足什么關系時,ME=NE.
(1)求反比例函數(shù)及一次函數(shù)的解析式;
(2)點P是x軸上一動點,使|PA-PB|的值最大,求點P的坐標及△PAB的面積;
(3)如圖2所示,點M、N都在直線AB上,過M、N分別作y軸的平行線交雙曲線于E、F,設M、N的橫坐標分別為m、n,且 , n>1,請?zhí)骄?/span>,當m、n滿足什么關系時,ME=NE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=6cm,現(xiàn)有一動點P從A出發(fā)以2cm/秒的速度,沿矩形的邊A—B—C—D回到點A,設點P的運動時間為t秒,
(1)當t=3秒時,求BP的長;
(2)當t為何值時,連接BP,AP,△ABP的面積為長方形的面積三分之一?
(3)Q為AD邊上的點,且DQ=5,當t為何值時,以長方形的兩個頂點及點P為頂點的三角形與△DCQ全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為點F,DE=DG.若△ADG和△AED的面積分別為50和30,則△EDF的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.
(1)甲、乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學校至多能夠提供資金4320元,請設計幾種購買方案供這個學校選擇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC與△ADE,AB=AC,AD=AE,且∠BAC=∠DAE=40°,CD與BE相交于點F,連接AF則下列結(jié)論:①CD=BE:②△ABF≌△ACF;③∠BFD=140°;④FA平分∠BFD;⑤∠FAC=∠FAE.其中正確的結(jié)論有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖各圖是棱長為1cm的小正方體擺成的,如圖①中,從正面看有1個正方形,表面積為6cm2;如圖②中,從正面看有3個正方形,表面積為18cm2;如圖③,從正面看有6個正方形,表面積為36cm2;…
(1)第6個圖中,從正面看有多少個正方形?表面積是多少?
(2)第n個圖形中,從正面看有多少個正方形?表面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com