【題目】如圖,在正五邊形ABCDE中,對角線AD,AC與EB分別相交于點(diǎn)M,N.下列結(jié)論錯(cuò)誤的是(
A.四邊形EDCN是菱形
B.四邊形MNCD是等腰梯形
C.△AEM與△CBN相似
D.△AEN與△EDM全等

【答案】C
【解析】解:∵在正五邊形ABCDE中, ∴AB=BC=CD=DE=AE,BE∥CD,AD∥BC,AC∥DE,
∴四邊形EDCN是平行四邊形,
EDCN是菱形;故A正確;
同理:四邊形BCDM是菱形,
∴CN=DE,DM=BC,
∴CN=DM,
∴四邊形MNCD是等腰梯形,故B正確;
∴EN=ED=DM=AE=CN=BM=CD,
∵AN=AC﹣CN,EM=BE﹣BM,
∵BE=AC,
∴△AEN≌△EDM(SSS),故D正確.
故選:C.
【考點(diǎn)精析】關(guān)于本題考查的菱形的判定方法和等腰梯形的判定,需要了解任意一個(gè)四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x<0)的圖象經(jīng)過點(diǎn)A(﹣1,1),過點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對稱軸,點(diǎn)B經(jīng)軸對稱變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三個(gè)小球分別標(biāo)有﹣2,0,1三個(gè)數(shù),這三個(gè)球除了標(biāo)的數(shù)不同外,其余均相同,將小球放入一個(gè)不透明的布袋中攪勻.
(1)從布袋中任意摸出一個(gè)小球,將小球上所標(biāo)之?dāng)?shù)記下,然后將小球放回袋中,攪勻后再任意摸出一個(gè)小球,再記下小球上所標(biāo)之?dāng)?shù),求兩次記下之?dāng)?shù)的和大于0的概率.(請用“畫樹狀圖”或“列表”等方法給出分析過程,并求出結(jié)果)
(2)從布袋中任意摸出一個(gè)小球,將小球上所標(biāo)之?dāng)?shù)記下,然后將小球放回袋中,攪勻后再任意摸出一個(gè)小球,將小球上所標(biāo)之?dāng)?shù)再記下,…,這樣一共摸了13次.若記下的13個(gè)數(shù)之和等于﹣4,平方和等于14.求:這13次摸球中,摸到球上所標(biāo)之?dāng)?shù)是0的次數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB為等腰三角形,頂點(diǎn)A的坐標(biāo)(2, ),底邊OB在x軸上.將△AOB繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度后得△A′O′B,點(diǎn)A的對應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為( )

A.( ,
B.( ,
C.(
D.( ,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O上依次有A、B、C、D四個(gè)點(diǎn), = ,連接AB、AD、BD,弦AB不經(jīng)過圓心O,延長AB到E,使BE=AB,連接EC,F(xiàn)是EC的中點(diǎn),連接BF.
(1)若⊙O的半徑為3,∠DAB=120°,求劣弧 的長;
(2)求證:BF= BD;
(3)設(shè)G是BD的中點(diǎn),探索:在⊙O上是否存在點(diǎn)P(不同于點(diǎn)B),使得PG=PF?并說明PB與AE的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2﹣x+a與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其頂點(diǎn)在直線y=﹣2x上.

(1)求a的值;
(2)求A,B的坐標(biāo);
(3)以AC,CB為一組鄰邊作ACBD,則點(diǎn)D關(guān)于x軸的對稱點(diǎn)D′是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)扇形的弧長是10πcm,面積是60πcm2 , 則此扇形的圓心角的度數(shù)是(
A.300°
B.150°
C.120°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD直線m, CE直線m,垂足分別為點(diǎn)DE.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,DA、E三點(diǎn)都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應(yīng)用:如圖3,D、EDA、E三點(diǎn)所在直線m上的兩動點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)FBAC平分線上的一點(diǎn),ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c經(jīng)過平行四邊形ABCD的頂點(diǎn)A(0,3)、B(﹣1,0)、D(2,3),拋物線與x軸的另一交點(diǎn)為E.經(jīng)過點(diǎn)E的直線l將平行四邊形ABCD分割為面積相等兩部分,與拋物線交于另一點(diǎn)F.點(diǎn)P在直線l上方拋物線上一動點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t

(1)求拋物線的解析式;
(2)當(dāng)t何值時(shí),△PFE的面積最大?并求最大值的立方根;
(3)是否存在點(diǎn)P使△PAE為直角三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案