【題目】如圖,反比例函數(shù)的圖象的一支在平面直角坐標(biāo)系中的位置如圖所示,根據(jù)圖象回答下列問題:
(1)圖象的另一支在第 象限;在每個(gè)象限內(nèi),y隨x的增大而 ;
(2)若此反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),求m的值.點(diǎn)A(-5,2)是否在這個(gè)函數(shù)圖象上?點(diǎn)B(-3,4)呢?
【答案】(1)增大;(2)m=-4,點(diǎn)A不在該函數(shù)圖象上,點(diǎn)B不在該函數(shù)圖象上.
【解析】試題分析:
(1)由反比例函數(shù)的圖象的一支在第二象限可知另一分支在第四象限,且在每個(gè)象限內(nèi),y隨x的增大而增大;
(2)將點(diǎn)(-2,3)代入反比例函數(shù) 即可解得m的值,計(jì)算點(diǎn)A和點(diǎn)B的橫坐標(biāo)和縱坐標(biāo)的積并與m-2的值進(jìn)行對(duì)比即可判斷出點(diǎn)A、B是否在該反比例函數(shù)的圖象上.
試題分析:
(1)∵由圖可知反比例函數(shù)的圖象的一支在第二象限,
∴反比例函數(shù)的圖象的另一支在第四象限,且在每個(gè)象限內(nèi),y隨x的增大而增大;
(2)把點(diǎn)(-2,3)代入反比例函數(shù) 可得: ,解得,
∴m-2=-4-2=-6,
∵, ,
∴點(diǎn)A(-5,2)和點(diǎn)B(-3,4)都不在反比例函數(shù)的圖象上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連接BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(分)周末,小英與她的父親、母親計(jì)劃從西安外出旅游,初步選擇了位于西安東線的景點(diǎn):兵馬俑, :華山,以及位于西線的景點(diǎn):太白山, :法門寺, :楊凌現(xiàn)代農(nóng)業(yè)示范園.由于時(shí)間倉促,他們只能去其中的兩個(gè)景點(diǎn),并且希望兩個(gè)景點(diǎn)能位于一條線路上.到底去哪兩個(gè)景點(diǎn),三人意見不統(tǒng)一.在這種情況下,小英父親建議,用小英學(xué)過的摸卡片游戲來決定.規(guī)則如下:在五個(gè)背面完全相同的卡片上寫上五個(gè)景點(diǎn)的代號(hào),然后洗勻,背面朝上放在桌面上,讓小英隨機(jī)摸出一張,不放回,然后讓小英母親再隨機(jī)摸出一張.照上面的規(guī)則,請(qǐng)你解答下列問題:
()己知小英的理想旅游景點(diǎn)是兵馬俑,求小英摸出寫有的卡片的概率.
()求小英和母親摸出的景點(diǎn)位于一條線上(東線或西線)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC于E,AF⊥CD于F,BD與AE、AF交于G、H.
(1)求證:△ABE∽△ADF;
(2)若AG=AH,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,3),B(-3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式<的解集;
(3)過點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,連接線段與線段交于點(diǎn)M,連接.
(1)如圖1,求證:;
(2)如圖1,求證:OM平分;
(3)如圖2,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3,E,F 分別是AB,BC邊上的點(diǎn),且∠EDF=45°.將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM;
(2)當(dāng)AE=1時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖表示一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(m,n是常數(shù),且mn0)的大致圖像是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,直線a//b,A,B為直線b上的兩點(diǎn),C,D為直線a上的兩點(diǎn),則圖中面積一定相等的三角形有( )對(duì).
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com