【題目】一塊邊長為x cm的正方形地磚,因需要被裁掉一塊2cm寬的長條,問剩下部分的面積是多少?

【答案】x2﹣2x

【解析】利用長方形的面積公式即可求解.

解:剩下的部分的面積是:xx﹣2=x2﹣2x.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F(xiàn)為BC上兩點(diǎn),且BE=CF,AF=DE.

求證:(1)△ABF≌△DCE;

(2)四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解關(guān)于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是( 。

A. (x﹣1)2=4 B. (x+1)2=4 C. (x﹣1)2=16 D. (x+1)2=16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到Rt△ADE的位置,點(diǎn)E在斜邊AB上,連結(jié)BD,過點(diǎn)D作DF⊥AC于點(diǎn)F.

(1)如圖1,若點(diǎn)F與點(diǎn)A重合,求證:AC=BC;

(2)若∠DAF=∠DBA,①如圖2,當(dāng)點(diǎn)F在線段CA的延長線上時(shí),判斷線段AF與線段BE的數(shù)量關(guān)系,并說明理由;

②當(dāng)點(diǎn)F在線段CA上時(shí),設(shè)BE=x,請用含x的代數(shù)式表示線段AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCDEF的相似比為1:3,則ABCDEF的面積比為(

A. 1:3 B. 1:6 C. 1:9 D. 1:16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知:ABCD,點(diǎn)E,F分別在ABCD上,且OEOF

(1)求證:∠1+∠2=90°;

(2)如圖2,分別在OE,CD上取點(diǎn)GH,使FO平分∠CFG,EO平分∠AEH,求證:FGEH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a2﹣2ab+b2﹣c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 y 2 x 1成正比例,且 x 3時(shí) y 4 。

1)求 y x 之間的函數(shù)關(guān)系式;

2)當(dāng) y 1時(shí),求 x 的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題11分)完成下列推理說明:

(1)如圖,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:

因?yàn)椤?=∠2(已知),且∠1=∠4___________

所以∠2=∠4(等量代換)

所以CE∥BF___________

所以∠___=∠3_________________

又因?yàn)椤螧=∠C(已知)

所以∠3=∠B(等量代換)

所以AB∥CD______________________

(2)如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.

證明:∵∠B+∠BCD=180°( 已知。

∴AB∥CD __________

∴∠B= ___________________________

又∵∠B=∠D( 已知。,

_____= ∠__________ ( 等量代換 )

∴AD∥BE_____________________

∴∠E=∠DFE_____________________

查看答案和解析>>

同步練習(xí)冊答案