【題目】如圖,已知拋物線y=mx2﹣6mx+5mx軸交于A、B兩點(diǎn),以AB為直徑的⊙P經(jīng)過(guò)該拋物線的頂點(diǎn)C,直線l∥ x軸,交該拋物線于M、N兩點(diǎn),交⊙ PE、F兩點(diǎn),若EF=2,則MN的長(zhǎng)是_____

【答案】

【解析】根據(jù)題意求出拋物線與x軸交點(diǎn)坐標(biāo),以及頂點(diǎn)坐標(biāo),進(jìn)而得出m的值,再利用勾股定理得出M點(diǎn)縱坐標(biāo),即可得出MN的長(zhǎng).

過(guò)點(diǎn)PPHMN于點(diǎn)H,連接EP,

y=mx2-6mx+5m=m(x-1)(x-5),

∴拋物線與x軸的交點(diǎn)坐標(biāo)A(1,0),B(5,0),

y=mx2-6mx+5m=m(x-3)2-4m,

C(3,-4m),P(3,0),

故⊙P的半徑為4m,

AP=4m,

可得:OP=3=1+4m,

解得:m=

AP=EP=2,

PHMN,

MH=HN=

PH=1,

當(dāng)y=1,則1=(x-1)(x-5),

整理得:x2-6x+3=0,

解得:x1=3-,x2=3+,

MN=3+-(3-)=2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線l:x軸交于點(diǎn),與y軸交于點(diǎn)B,點(diǎn)C是線段OA上一動(dòng)點(diǎn)以點(diǎn)A為圓心,AC長(zhǎng)為半徑作x軸于另一點(diǎn)D,交線段AB于點(diǎn)E,連結(jié)OE并延長(zhǎng)交于點(diǎn)F.

求直線l的函數(shù)表達(dá)式和的值;

如圖2,連結(jié)CE,當(dāng)時(shí),

求證:

求點(diǎn)E的坐標(biāo);

當(dāng)點(diǎn)C在線段OA上運(yùn)動(dòng)時(shí),求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,ABAC∠BAC50°∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,給出下列四組條件:①AB=DE,BC=EF,AC=DF ②AB=DE,∠B=∠E,BC=EF;③∠B=∠EBC=EF,∠C=∠F ④AB=DE,AC=DF,∠B=∠E.能使△ABC≌△DEF_____組.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖表示的是用火柴棒搭成的一個(gè)個(gè)圖形,第一個(gè)圖形用了5根火柴,第二個(gè)圖形用了8根火柴,,用281根火柴棒搭成了第(個(gè)圖形.

A. 93 B. 94 C. 80 D. 81

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有、、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在(

A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處

B.AC、BC兩邊垂直平分線的交點(diǎn)處

C.AC、BC兩邊高線的交點(diǎn)處

D.AC、BC兩邊中線的交點(diǎn)處

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組想測(cè)量一棵樹(shù)CD的高度,他們先在點(diǎn)A處測(cè)得樹(shù)頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測(cè)得樹(shù)頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線上).請(qǐng)你根據(jù)他們測(cè)量數(shù)據(jù)計(jì)算這棵樹(shù)CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)

【答案】8.7

【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長(zhǎng)度,然后在直角△BDC中,利用三角函數(shù)即可求解.

試題解析:∵∠CBD=∠A+∠ACB,

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,

∴∠A=∠ACB,

∴BC=AB=10(米).

在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).

答:這棵樹(shù)CD的高度為8.7米.

考點(diǎn):解直角三角形的應(yīng)用

型】解答
結(jié)束】
23

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一點(diǎn),直線BP與y軸相交于點(diǎn)C.

(1)求拋物線y=﹣x2+ax+b的解析式;

(2)當(dāng)點(diǎn)P是線段BC的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);

(3)在(2)的條件下,求sin∠OCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,Am°,ABC和∠ACD的平分線相交于點(diǎn)A1,得∠A1A1BC和∠A1CD的平分線相交于點(diǎn)A2,得∠A2;…;A2018BC和∠A2018CD的平分線交于點(diǎn)A2019則∠A2019________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列條件中:A+B=∠C,A:∠B:∠C156,A90°﹣∠B,A=∠BC中,能確定△ABC是直角三角形的條件有(  )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案