如圖1,正方形和正三角形的邊長(zhǎng)都為1,點(diǎn)分別在線段上滑動(dòng),設(shè)點(diǎn)的距離為,到的距離為,記(當(dāng)點(diǎn)分別與重合時(shí),記).

(1)當(dāng)時(shí)(如圖2所示),求的值(結(jié)果保留根號(hào));

(2)當(dāng)為何值時(shí),點(diǎn)落在對(duì)角形上?請(qǐng)說(shuō)出你的理由,并求出此時(shí)的值(結(jié)果保留根號(hào));

(3)請(qǐng)你補(bǔ)充完成下表(精確到0.01):

0.03

0

0.29

0.29

0.13

0.03

(4)若將“點(diǎn)分別在線段上滑動(dòng)”改為“點(diǎn)分別在正方形邊上滑動(dòng)”.當(dāng)滑動(dòng)一周時(shí),請(qǐng)使用(3)的結(jié)果,在圖4中描出部分點(diǎn)后,勾畫出點(diǎn)運(yùn)動(dòng)所形成的大致圖形.

(參考數(shù)據(jù):.)

解:(1)過(guò),

 

,,

,

(2)當(dāng)時(shí),點(diǎn)在對(duì)角線上,其理由是:

過(guò)

過(guò)

平分,,

,

,

,

時(shí),點(diǎn)落在對(duì)角線上.

(以下給出兩種求的解法)

方法一:

中,,

方法二:當(dāng)點(diǎn)在對(duì)角線上時(shí),有

,

解得

(3)

0.13

0.03

0

0.03

0.13

0.29

0.50

0.50

0.29

0.13

0.03

0

0.03

0.13

(4)由點(diǎn)所得到的大致圖形如圖所示:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,是一個(gè)長(zhǎng)方形地面,現(xiàn)有正三角形、正方形和正六邊形三種瓷磚若干,要求:
(1)三種瓷磚都必須用到;(2)鋪成長(zhǎng)方形或近似長(zhǎng)方形,請(qǐng)你設(shè)計(jì)一種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•邢臺(tái)二模)規(guī)律:
如圖1,直線m∥n,A、B為直線n上的點(diǎn),C、P為直線m上的點(diǎn).如果A、B、C為三個(gè)定點(diǎn),點(diǎn)P在m上移動(dòng),那么無(wú)論點(diǎn)P移動(dòng)到何位置,△ABP與△ABC的面積總相等,其理由是
同底等高的兩個(gè)三角形面積相等
同底等高的兩個(gè)三角形面積相等

應(yīng)用:
(1)如圖2,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是
3
4
3
4

(2)如圖3,四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,求△ACF的面積.
(3)如圖4,五邊形ABCDE和五邊形BFGHP都是正五邊形,若正五邊形ABCDE的邊長(zhǎng)為a,求△ACH的面積(結(jié)果不求近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題
(1)一幅圖案,在某個(gè)頂點(diǎn)處由三個(gè)邊長(zhǎng)相等的正多邊形鑲嵌而成.其中的兩個(gè)分別是正方形和正六邊形,則第三個(gè)正多邊形的邊數(shù)是
12
12

(2)從下列圖中選擇四個(gè)拼圖板,可拼成一個(gè)矩形,正確的選擇方案為
①②③④
①②③④
.(填寫拼圖板的代碼即可).

(3)已知:如圖,∠1=∠2,∠3=∠4,∠5=∠6.
求證:ED∥FB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說(shuō),使用給定的某些多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里稱為平面密鋪).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角和為360°時(shí),就能夠拼成一個(gè)平面圖形.
探究用同一種正多邊形進(jìn)行平面密鋪.
例如:如圖1,用三個(gè)同種類型(大小一樣、形狀相同)的正六邊形地磚可以平面密鋪.
(1)請(qǐng)問(wèn)僅限于同一種類型的多邊形進(jìn)行密鋪,哪幾種能平面密鋪?
①②
①②
(填序號(hào));
①正三角形    ②正四邊形     ③正五邊形     ④正八邊形
探究用兩種邊長(zhǎng)相等的正多邊形進(jìn)行平面密鋪.
例如:如圖2,二個(gè)正三角形和二個(gè)正六邊形可以平面密鋪.
(2)限用兩種邊長(zhǎng)相等的正多邊形進(jìn)行平面密鋪,以下哪幾種是可行的?
ABE
ABE

A.正三角形和正方形      B.正方形和正八邊形         C.正方形和正五邊形
D.正八邊形和正六邊形    E.正三角形和正十二邊形    F.正三角形和正五邊形
(3)繼續(xù)推廣到用三種不同的正多邊形進(jìn)行平面密鋪,請(qǐng)寫出符合題意的不同組合.
例如:①正三角形、正方形、正六邊形;
②正三角形、正九邊形、正十八邊形;
正三角形、正四邊形,正十二邊形
正三角形、正四邊形,正十二邊形
;
正三角形,正十邊形,正十五邊形
正三角形,正十邊形,正十五邊形

(4)如果用形狀,大小相同的如圖3方格紙中的三角形,能進(jìn)行平面密鋪嗎?若能,請(qǐng)?jiān)诜礁窦堉挟嫵雒茕伒脑O(shè)計(jì)圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案