【題目】如圖,一次函數(shù)y=x﹣2與反比例函數(shù)y=(x>0)的圖象相交于點M(m,1).

(1)填空:m的值為   ,反比例函數(shù)的解析式為   

(2)已知點N(n,n),過點Nl1x軸,交直線y=x﹣2于點A,過點Nl2y軸,交反比例函數(shù)y=(x>0)的圖象與點B,試用n表示NAB的面積S.

【答案】(1)3y=;(2|n|

【解析】分析:(1)把M(m,1)代入一次函數(shù)y=x-2,可得m的值;把M(3,1)代入反比例函數(shù)y=(x>0),可得k的值;

(2)依據(jù)點N與點A的縱坐標相同,均為n,可得AN=n+2-n=2,依據(jù)點N與點B的橫坐標相同,均為n,可得BN=|-n|,即可得到SNBA=×2×|-n|=|-n|.

詳解:(1)把M(m,1)代入一次函數(shù)y=x-2,可得

1=m-2,

解得m=3,

M(3,1)代入反比例函數(shù)y=(x>0),可得

k=3×1=3,

∴反比例函數(shù)的解析式為y=,

(2)由題可得,點N與點A的縱坐標相同,均為n,

y=n代入y=x-2中,得x=n+2,

A(n+2,n),

AN=n+2-n=2,

由題可得,點N與點B的橫坐標相同,均為n,

x=n代入y=中,得y=,

B(n,),

BN=|-n|,

SNBA=×2×|-n|=|-n|.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線ABCD.

(1)如圖1,若點EAB、CD之間的一點,連接BE.DE得到∠BED.求證:∠BED=∠B+D.

(2)若直線MN分別與AB、CD交于點E.F

①如圖2,∠BEF和∠EFD的平分線交于點G.猜想∠G的度數(shù),并證明你的猜想;

②如圖3,EG1EG2為∠BEF內(nèi)滿足∠1=∠2的兩條線,分別與∠EFD的平分線交于點G1G2.求證:∠FG1E+G2180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CD平分∠ACBAB于點D,EAC上一點,且DECE

1)求證:DEBC

2)若∠A90°,SBCD26,BC13,求AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝中華人民共和國七十周年華誕,某校舉行書畫大賽,準備購買甲、乙兩種文具,獎勵在活動中表現(xiàn)優(yōu)秀的師生.已知購買個甲種文具、個乙種文具共需花費元;購買個甲種文具、個乙種文具共需花費元.

1)求購買一個甲種文具、一個乙種文具各需多少元?

2)若學(xué)校計劃購買這兩種文具共個,投入資金不少于元又不多于元,設(shè)購買甲種文具個,求有多少種購買方案?

3)設(shè)學(xué)校投入資金元,在(2)的條件下,哪種購買方案需要的資金最少?最少資金是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=-3x+3x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,頂點D恰好落在雙曲線y=.若將正方形沿x軸向左平移b個單位長度后,點C恰好落在該雙曲線上,則b的值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料:數(shù)學(xué)興趣一小組的同學(xué)對完全平方公式進行研究:因,將左邊展開得到,移項可得:.

數(shù)學(xué)興趣二小組受興趣一小組的啟示,繼續(xù)研究發(fā)現(xiàn):對于任意兩個非負數(shù)、,都存在,并進一步發(fā)現(xiàn),兩個非負數(shù)的和一定存在著一個最小值.

根據(jù)材料,解答下列問題:

1__________);___________);

2)求的最小值;

3)已知,當為何值時,代數(shù)式有最小值,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點AC分別在x、y軸的正半軸上,頂點B的坐標為(42)點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù)k0x0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN

(1)當點M是邊BC的中點時,求反比例函數(shù)的表達式;

(2)在點M的運動過程中,試證明:是一個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店銷售一批襯衫,每件進價元,開始以每件元的價格銷售,每星期能賣出件,后來因庫存積壓,決定降價銷售,經(jīng)兩次降價后的每件售價元,每星期能賣出件.

已知兩次降價百分率相同,求每次降價的百分率;

聰明的店主在降價過程中發(fā)現(xiàn),適當?shù)慕祪r既可增加銷售又可增加收入,且每件襯衫售價每降低元,銷售會增加件,若店主想要每星期獲利元,應(yīng)把售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰直角三角形ABC,點P是斜邊BC上一點(不與B,C重合),PE△ABP的外接圓⊙O的直徑.

1)求證:△APE是等腰直角三角形;

2)若⊙O的直徑為2,求的值.

查看答案和解析>>

同步練習(xí)冊答案