【題目】如圖,正方形OABC繞著點O逆時針旋轉(zhuǎn)40°得到正方形ODEF,連接AF,求∠OFA的度數(shù)

【答案】25°

【解析】

先利用正方形的性質(zhì)得OA=OC,∠AOC=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OC=OF,∠COF=40°,則OA=OF,根據(jù)等腰三角形的性質(zhì)得∠OAF=OFA,然后根據(jù)三角形的內(nèi)角和定理計算∠OFA的度數(shù).

解:∵四邊形OABC為正方形,

OA=OC,∠AOC=90°,

∵正方形OABC繞著點O逆時針旋轉(zhuǎn)40°得到正方形ODEF,

OC=OF,∠COF=40°,

OA=OF,

∴∠OAF=OFA,

∵∠AOF=AOC+COF=90°+40°=130°,

∴∠OFA=180°-130°)=25°.

故答案為25°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線yx23x+cy軸的交點為(0,2),則下列說法正確的是( 。

A. 拋物線開口向下

B. 拋物線與x軸的交點為(﹣10),(30

C. 當(dāng)x1時,y有最大值為0

D. 拋物線的對稱軸是直線x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)分別為,點軸上,其坐標(biāo)為,拋物線經(jīng)過點為第三象限內(nèi)拋物線上一動點.

求該拋物線的解析式.

連接,過點軸交于點,當(dāng)的周長最大時,求點的坐標(biāo)和周長的最大值.

若點軸上一動點,點為平面直角坐標(biāo)系內(nèi)一點.當(dāng)點構(gòu)成菱形時,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們稱這個三角形是比例三角形.

1)已知△ABC是比例三角形,AB1,BC2,求AC的長.

2)如圖1,在四邊形ABCD中,ABAD,對角線BD平分∠ABC,∠BAC=∠ADC

求證:△ABC是比例三角形

ABDC,如圖2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:

(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是   ;

(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查我市民上班時最常用的交通工具的情況隨機抽取了部分市民進行調(diào)查,要求被調(diào)查者從A:自行車,B:電動車,C:公交車,D:家庭汽車;E.其他中選擇最常用的一項.將所有調(diào)查結(jié)果整理后繪制成如下不完整計圖,請結(jié)合統(tǒng)計圖回答下列問題:

1)本次一共調(diào)查了   名市民;扇形統(tǒng)計圖中B項對應(yīng)的圓心角是   度;

2)補全條形統(tǒng)計圖;

3)若甲、乙兩人上班時從A、B、C、D四種交通工具中隨或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,兩點.

(1)求m、k、b的值;

(2)連接OA、OB,計算三角形OAB的面積;

(3)結(jié)合圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仙桃是遂寧市某地的特色時令水果.仙桃一上市,水果店的老板用2400元購進一批仙桃,很快售完;老板又用3700元購進第二批仙桃,所購件數(shù)是第一批的倍,但進價比第一批每件多了5元.

1)第一批仙桃每件進價是多少元?

2)老板以每件225元的價格銷售第二批仙桃,售出80%后,為了盡快售完,剩下的決定打折促銷.要使得第二批仙桃的銷售利潤不少于440元,剩余的仙桃每件售價至少打幾折?(利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線的對稱軸為直線,與軸的一個交點坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:

;

③方程的兩個根是;

④方程有一個實根大于

⑤當(dāng)時,增大而增大.

其中結(jié)論正確的個數(shù)是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案