在?ABCD中,E、F分別是AB、CD的中點(diǎn),連接AF、CE.
(1)求證:△BEC≌△DFA;
(2)連接AC,當(dāng)CA=CB時(shí),判斷四邊形AECF是什么特殊四邊形?并證明你的結(jié)論.

【答案】分析:(1)根據(jù)平行四邊形的性質(zhì)推出BC=AD,∠B=∠D,AB=CD,求出BE=DF,根據(jù)SAS即可推出答案;
(2)證AE∥CF,AE=CF得到平行四邊形AECF,根據(jù)等腰三角形的性質(zhì)求出∠AEC=90°,根據(jù)矩形的判定即可推出答案.
解答:(1)證明:∵四邊形ABCD是平行四邊形,
∴BC=AD,∠B=∠D,AB=CD,
∵E、F分別是AB、CD的中點(diǎn),
∴BE=DF=AE=CF,
在△BEC和△DFA中,
BE=DF,∠B=∠D,BC=AD,
∴△BEC≌△DFA.

(2)答:四邊形AECF是矩形.
證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∵AE=CF,
∴四邊形AECF是平行四邊形,
∵AC=BC,E是AB的中點(diǎn),
∴CE⊥AB,
∴∠AEC=90°,
∴平行四邊形AECF是矩形.
點(diǎn)評(píng):本題主要考查對(duì)平行四邊形的性質(zhì)和判定,等腰三角形的性質(zhì),矩形的判定等知識(shí)點(diǎn)的理解和掌握,能求出BE=DF和平行四邊形AECF是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、在?ABCD中,若∠A=3∠B,則∠D=
45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,E、F分別為邊AB、CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BEDF是平行四邊形;
(3)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,EF∥AB,MN∥BC,MN與EF交于點(diǎn)O,且O點(diǎn)在對(duì)角線(xiàn)上,圖中面積相等的四邊形有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,BD為對(duì)角線(xiàn),EF垂直平分BD分別交AD、BC的于點(diǎn)E、F,交BD于點(diǎn)O.

(1)試說(shuō)明:BF=DE;
(2)試說(shuō)明:△ABE≌△CDF;
(3)如果在?ABCD中,AB=5,AD=10,有兩動(dòng)點(diǎn)P、Q分別從B、D兩點(diǎn)同時(shí)出發(fā),沿△BAE和△DFC各邊運(yùn)動(dòng)一周,即點(diǎn)P自B→A→E→B停止,點(diǎn)Q自D→F→C→D停止,點(diǎn)P運(yùn)動(dòng)的路程是m,點(diǎn)Q運(yùn)動(dòng)的路程是n,當(dāng)四邊形BPDQ是平行四邊形時(shí),求m與n滿(mǎn)足的數(shù)量關(guān)系.(畫(huà)出示意圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在BC的延長(zhǎng)線(xiàn)上,且BE=CF.
(1)求證:∠BAE=∠CDF.
(2)判斷四邊形AEFD的形狀并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案