如圖,Rt△AOB的兩直角邊OA、OB的長(zhǎng)分別是1和3,將△AOB繞O點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°,至△DOC的位置.
(1)求過(guò)C、B、A三點(diǎn)的二次函數(shù)的解析式;
(2)若(1)中拋物線的頂點(diǎn)是M,判定△MDC的形狀,并說(shuō)明理由.
(1)由題意知,C、B、A三點(diǎn)的坐標(biāo)分別為:C(-3,0)、B(0,3)、A(1,0);
設(shè)二次函數(shù)的解析式為y=a(x-1)(x+3),依題意,有:
a(0-1)(0+3)=3,解得:a=-1
故過(guò)C、B、A三點(diǎn)的二次函數(shù)的解析式為y=-x2-2x+3.

(2)△MDC是等腰直角三角形,理由如下:
由(1)知,拋物線的解析式:y=-x2-2x+3=-(x+1)2+4,則M(-1,4);
易知:C(-3,0)、D(0,1),則:
MC2=(-1+3)2+(4-0)2=20,MD2=(-1-0)2+(4-1)2=10,CD2=(-3-0)2+(0-1)2=10
則MC2=MD2+CD2,且MD=CD,
因此△MDC為等腰直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線的頂點(diǎn)為(3,3),且點(diǎn)(2,-2)在拋物線上,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知在直角梯形OABC中,ABOC,BC⊥x軸于點(diǎn)C,A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過(guò)P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使得以C、P、Q為頂點(diǎn)的三角形與△OAB相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,
3
),點(diǎn)B的坐標(biāo)(-2,0),點(diǎn)O為原點(diǎn).
(1)求過(guò)點(diǎn)A,O,B的拋物線解析式;
(2)在x軸上找一點(diǎn)C,使△ABC為直角三角形,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)C的坐標(biāo);
(3)將原點(diǎn)O繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)120°后得點(diǎn)O′,判斷點(diǎn)O′是否在拋物線上,請(qǐng)說(shuō)明理由;
(4)在x軸下方的拋物線上是否存在一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交直線AB于點(diǎn)E,線段OE把△AOB分成兩個(gè)三角形,使其中一個(gè)三角形面積與四邊形BPOE面積比為2:3,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=
1
2
x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-3,6),并且與x軸交于點(diǎn)B(-1,0)和點(diǎn)C,頂點(diǎn)為P.
(1)求這個(gè)二次函數(shù)解析式;
(2)設(shè)D為線段OC上的點(diǎn),滿足∠DPC=∠BAC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線y=-
1
2
x+1
交坐標(biāo)軸于A、B點(diǎn),以線段AB為邊向上作正方形ABCD,過(guò)點(diǎn)A、D、C的拋物線與直線的另一個(gè)交點(diǎn)為E.
(1)求點(diǎn)C、D的坐標(biāo)
(2)求拋物線的解析式
(3)若拋物線與正方形沿射線AB下滑,直至點(diǎn)C落在x軸上時(shí)停止,求拋物線上C、E兩點(diǎn)間的拋物線所掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ABCD,AB=7,CD=1,AD=BC=5.點(diǎn)M,N分別在邊AD,BC上運(yùn)動(dòng),并保持MNAB,ME⊥AB,NF⊥AB,垂足分別為E,F(xiàn).
(1)求梯形ABCD的面積;
(2)求四邊形MEFN面積的最大值;
(3)試判斷四邊形MEFN能否為正方形?若能,求出正方形MEFN的面積;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,頂點(diǎn)為D的拋物線y=x2+bx-3與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,連接BC,已知△BOC是等腰三角形.
(1)求點(diǎn)B的坐標(biāo)及拋物線y=x2+bx-3的解析式;
(2)求四邊形ACDB的面積;
(3)若點(diǎn)E(x,y)是y軸右側(cè)的拋物線上不同于點(diǎn)B的任意一點(diǎn),設(shè)以A,B,C,E為頂點(diǎn)的四邊形的面積為S.
①求S與x之間的函數(shù)關(guān)系式.
②若以A,B,C,E為頂點(diǎn)的四邊形與四邊形ACDB的面積相等,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是邊長(zhǎng)為60cm的正方形硬紙片,剪掉陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使A、B、C、D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)底面是正方形的長(zhǎng)方體包裝盒.
(1)若折疊后長(zhǎng)方體底面正方形的面積為1250cm2,求長(zhǎng)方體包裝盒的高;
(2)設(shè)剪掉的等腰直角三角形的直角邊長(zhǎng)為x(cm),長(zhǎng)方體的側(cè)面積為S(cm2),求S與x的函數(shù)關(guān)系式,并求x為何值時(shí),S的值最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案