(2010•婁底)如圖,在一個(gè)坡角為20°的斜坡上有一棵樹,高為AB,當(dāng)太陽(yáng)光線與水平線成52°角時(shí),測(cè)得該樹斜坡上的樹影BC的長(zhǎng)為10m,求樹高AB(精確到0.1m)
(已知:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin52°≈0.788,cos52°≈0.616,tan52°≈1.280.供選用)

【答案】分析:過C作AB的垂線,設(shè)垂足為D.在Rt△CDB中,已知斜邊BC=10m,利用三角函數(shù)求出CD和BD的長(zhǎng).同理在△ACD中,已知∠ACD=52°,CD,求出AD長(zhǎng),計(jì)算出AB=AD-BD,從而得到樹的高度.
解答:解:作CD⊥AB于D.
在Rt△BCD中,BC=10m,∠BCD=20°,
∴CD=BC•cos20°≈10×0.940=9.40(m),
BD=BC•sin20°≈10×0.342=3.42(m);
在Rt△ACD中,CD=9.40m,∠ACD=52°,
∴AD=CD•tan52°≈9.40×1.280=12.032(m).
∴AB=AD-BD=12.032-3.42≈8.6(m).
答:樹高8.6米.
點(diǎn)評(píng):本題考查了解直角三角形中有關(guān)坡角問題:把問題轉(zhuǎn)化為解直角三角形,已知一邊和一銳角可解此直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(12)(解析版) 題型:解答題

(2010•婁底)如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
求證:(1)FC=AD;
(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖南省婁底市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•婁底)如圖,直線AB、CD相交于點(diǎn)O.OE平分∠AOD,若∠BOD=100°,則∠AOE=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖南省婁底市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•婁底)如圖所示,圖中三角形的個(gè)數(shù)共有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖南省婁底市冷水江市中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2010•婁底)如圖,直線AB、CD相交于點(diǎn)O.OE平分∠AOD,若∠BOD=100°,則∠AOE=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣西柳州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•婁底)如圖所示,圖中三角形的個(gè)數(shù)共有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案