【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長(zhǎng)線相交于點(diǎn)E,AB、DC的延長(zhǎng)線相交于點(diǎn)F.若∠E+∠F=80°,則∠A=____°.
【答案】50
【解析】試題分析:連結(jié)EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠BCD=180°,根據(jù)對(duì)頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.
試題解析:連結(jié)EF,如圖,
∵四邊形ABCD內(nèi)接于⊙O,
∴∠A+∠BCD=180°,
而∠BCD=∠ECF,
∴∠A+∠ECF=180°,
∵∠ECF+∠1+∠2=180°,
∴∠1+∠2=∠A,
∵∠A+∠AEF+∠AFE=180°,
即∠A+∠AEB+∠1+∠2+∠AFD=180°,
∴∠A+80°+∠A=180°,
∴∠A=50°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】8年級(jí)某老師對(duì)一、二班學(xué)生閱讀水平進(jìn)行測(cè)試,并將成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了如下圖表(得分為整數(shù),滿分為10分,成績(jī)大于或等于6分為合格,成績(jī)大于或等于9分為優(yōu)秀).
平均分 | 方差 | 中位數(shù) | 眾數(shù) | 合格率 | 優(yōu)秀率 | |
一班 | 7.2 | 2.11 | 7 | 6 | 92.5% | 20% |
二班 | 6.85 | 4.28 | 8 | 8 | 85% | 10% |
根據(jù)圖表信息,回答問(wèn)題:
(1)用方差推斷, 班的成績(jī)波動(dòng)較大;用優(yōu)秀率和合格率推斷, 班的閱讀水平更好些;
(2)甲同學(xué)用平均分推斷,一班閱讀水平更好些;乙同學(xué)用中位數(shù)或眾數(shù)推斷,二班閱讀水平更好些.你認(rèn)為誰(shuí)的推斷比較科學(xué)合理,更客觀些.為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在相鄰兩點(diǎn)距離為1的點(diǎn)陣紙上(左右相鄰或上下相鄰的兩點(diǎn)之間的距離都是1個(gè)單位長(zhǎng)度),三個(gè)頂點(diǎn)都在點(diǎn)陣上的三角形叫做點(diǎn)陣三角形,請(qǐng)按要求完成下列操作:
(1)將點(diǎn)陣△ABC水平向右平移4個(gè)單位長(zhǎng)度,再豎直向上平移5個(gè)單位長(zhǎng)度,畫(huà)出平移后的△A1B1C1;
(2)連接AA1、BB1,則線段AA1、BB1的位置關(guān)系為 、數(shù)量關(guān)系為 .估計(jì)線段AA1的長(zhǎng)度大約在 <AA1< 單位長(zhǎng)度:(填寫(xiě)兩個(gè)相鄰整數(shù));
(3)畫(huà)出△ABC邊AB上的高CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,有格點(diǎn)三角形.
(1)寫(xiě)出三個(gè)頂點(diǎn)的坐標(biāo).
(2)將三角形沿方向平移,當(dāng)點(diǎn)的對(duì)應(yīng)點(diǎn)在軸上時(shí),畫(huà)出平移后的三角形.
(3)在給出圖形中找一格點(diǎn)(點(diǎn)除外),使三角形與面積相等,并把滿足條件的格點(diǎn)用線連起來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《人民日?qǐng)?bào)》2019年3月1日刊載了“2018年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”.有關(guān)脫貧攻堅(jiān)的數(shù)據(jù)如下表.
年度 | 2014 | 2015 | 2016 | 2017 | 2018 |
農(nóng)村貧困人口/萬(wàn) | 7017 | 5575 | 4335 | 3046 | 1660 |
貧困發(fā)生率/% | 7.2 | 5.7 | 4.5 | 3.1 | 1.7 |
(1)在給出圖形中,直觀表示近年農(nóng)村貧困人口人數(shù)變化情況.
(2)根據(jù)你完善的統(tǒng)計(jì)圖,寫(xiě)兩點(diǎn)你獲得的信息.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如:3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a= ,b= ;
(2)試著把7+4化成一個(gè)完全平方式.
(3)若a是216的立方根,b是16的平方根,試計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出:若一個(gè)四邊形的兩組對(duì)邊乘積之和等于它的兩條對(duì)角線的乘積,則稱這個(gè)四邊形為巧妙四邊形.
初步思考:(1)寫(xiě)出你所知道的四邊形是巧妙四邊形的兩種圖形的名稱: , .
(2)小敏對(duì)巧妙四邊形進(jìn)行了研究,發(fā)現(xiàn)圓的內(nèi)接四邊形一定是巧妙四邊形.
如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形.
求證:AB·CD+BC·AD=AC·BD.
小敏在解答此題時(shí),利用了“相似三角形”進(jìn)行證明,她的方法如下:
在BD上取點(diǎn)M,使∠MCB=∠DCA.
(請(qǐng)你在下面的空白處完成小敏的證明過(guò)程.)
推廣運(yùn)用:如圖②,在四邊形ABCD中,∠A=∠C=90°,AD=,AB=,CD=2.求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,BD是一條對(duì)角線,點(diǎn)E在直線CD上(與點(diǎn)C,D不重合),連接AE,平移△ADE,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCF,過(guò)點(diǎn)F作FG⊥BD于點(diǎn)G,連接AG,EG.
(1)問(wèn)題猜想:如圖1,若點(diǎn)E在線段CD上,試猜想AG與EG的數(shù)量關(guān)系是____________,位置關(guān)系是____________;
(2)類比探究:如圖2,若點(diǎn)E在線段CD的延長(zhǎng)線上,其余條件不變,小明猜想(1)中的結(jié)論仍然成立,請(qǐng)你給出證明;
(3)解決問(wèn)題:若點(diǎn)E在線段DC的延長(zhǎng)線上,且∠AGF=120°,正方形ABCD的邊長(zhǎng)為2,請(qǐng)?jiān)趥溆脠D中畫(huà)出圖形,并直接寫(xiě)出DE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個(gè)結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點(diǎn)為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對(duì)稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com