【題目】定義:我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請(qǐng)說(shuō)明理由.
(2)性質(zhì)探究:
①如圖1,垂美四邊形ABCD兩組對(duì)邊AB、CD與BC、AD之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給出證明.
②如圖3,在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說(shuō)明理由;
(3)問題解決:
如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE、BG,GE,已知AC=2,AB=5.求GE的長(zhǎng)度.
【答案】(1)四邊形ABCD是垂美四邊形,證明見解析 (2)①,證明見解析;②四邊形FMAN是矩形,證明見解析 (3)
【解析】
(1)根據(jù)垂直平分線的判定定理證明即可;
(2)①根據(jù)垂直的定義和勾股定理解答即可;②根據(jù)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得,再根據(jù)△ABD和△ACE是等腰三角形,可得,再由(1)可得,,從而判定四邊形FMAN是矩形;
(3)根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合(2)的結(jié)論計(jì)算即可.
(1)四邊形ABCD是垂美四邊形
連接AC、BD
∵
∴點(diǎn)A在線段BD的垂直平分線上
∵
∴點(diǎn)C在線段BD的垂直平分線上
∴直線AC是線段BD的垂直平分線
∴
∴四邊形ABCD是垂美四邊形;
(2)①,理由如下
如圖,已知四邊形ABCD中,,垂足為E
由勾股定理得
②四邊形FMAN是矩形,理由如下
如圖,連接AF
∵在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn)
∵△ABD和△ACE是等腰三角形
由(1)可得,
∵
∴四邊形FMAN是矩形;
(3)連接CG、BE,
,即
在△AGB和△ACE中
∵
,即
∴四邊形CGEB是垂美四邊形
由(2)得
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一列有理數(shù)﹣1,2,﹣3,4,﹣5,6,……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,“峰6”中C的位置是有理數(shù)_____,2018應(yīng)排在A,B,C,D,E中的_____位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠ADC=72°,AD的垂直平分線交對(duì)角線BD于點(diǎn)P , 垂足為E , 連接CP , 求∠CPB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中∠DAE=25°,AE交對(duì)角線BD于E點(diǎn),那么∠BEC等于( 。
A.45°
B.60°
C.70°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn),設(shè)坐標(biāo)軸的單位長(zhǎng)度為1cm, 整點(diǎn)P從原點(diǎn)0出發(fā),速度為1cm/s, 且整點(diǎn)P做向上或向右運(yùn)動(dòng)(如圖1所示.運(yùn)動(dòng)時(shí)間(s)與整點(diǎn)(個(gè))的關(guān)系如下表:
整點(diǎn)P從原點(diǎn)出發(fā)的時(shí)間(s) | 可以得到整點(diǎn)P的坐標(biāo) | 可以得到整點(diǎn)P的個(gè)數(shù) |
1 | (0,1)(1,0) | 2 |
2 | (0,2)(1,1)(2,0) | 3 |
3 | (0,3)(1,2)(2,1)(3,0) | 4 |
. | · | . |
根據(jù)上表中的規(guī)律,回答下列問題:
(1)當(dāng)整點(diǎn)P從點(diǎn)0出發(fā)4s時(shí),可以得到的整點(diǎn)的個(gè)數(shù)為______個(gè).
(2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8s時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連結(jié)這些整點(diǎn).
(3)當(dāng)整點(diǎn)P從點(diǎn)0出發(fā)______s時(shí),可以得到整點(diǎn)(16,4)的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AB=6,BC=8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長(zhǎng)為( )
A. 6B. 5C. 4D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)對(duì)(a,b)、(c,d),定義:當(dāng)且僅當(dāng)a=c且b=d時(shí),(a,b)=(c,d);并定義其運(yùn)算如下: (a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),則xy的值是( )
A.﹣1
B.0
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,對(duì)角線與交于點(diǎn).過(guò)點(diǎn)作的平行線,過(guò)點(diǎn)作的平行線,兩直線相交于點(diǎn).
(1)求證:四邊形是矩形;
(2)若,,則菱形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰三角形的兩條邊a,b是方程x2-kx+12=0的兩根,另一邊c是方程x2-16=0的一個(gè)根, 求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com