【題目】5支籃球隊進行單循環(huán)比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是 .單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.有下列四個命題:p1:恰有四支球隊并列第一名為不可能事件;p2:有可能出現(xiàn)恰有兩支球隊并列第一名;p3:每支球隊都既有勝又有敗的概率為 ;p4:五支球隊成績并列第一名的概率為 .其中真命題是(
A.p1 , p2 , p3
B.p1 , p2 , p4
C.p1 , p3 , p4
D.p2 , p3 , p4

【答案】A
【解析】解:p1為真:因為若出現(xiàn)四支球隊并列第一名, 則第一名的勝場數(shù)不可能為3或者4(因為如此需要超過10個單場勝利者)并列贏兩場,
那么自然就是五隊同名次,所以不可能恰有四支球隊并列第一.有可能出現(xiàn)恰有兩支球隊并列第一名,p2為真.
p3為真:5支球隊單循環(huán)一共是10場比賽,
所以有210個不同的結(jié)果,由于勝率都是 ,
故認為所有不同比賽結(jié)果都是等可能的.記有全勝的比賽可能結(jié)果為 種,
有全敗的比賽可能結(jié)果為 種.既有全勝又有全敗的結(jié)果為 種,
則既無全勝又無全敗的結(jié)果為 種.
命題p3的概率為
= ,故p3是正確的.
p4為假:若五支球隊成績并列第一名則必出現(xiàn)a>b>c>d>e>a,
同時a>c>e>b>d>a,
也就是彼得森圖.規(guī)定外圈順時針為勝,
那么外圈一共有 種不同排列,內(nèi)圈只有兩種,
故一共有48種,所以概率為

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)的圖象上,從左向右第3個正方形中的一個頂點A的坐標為(6,2),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則第4個正方形的邊長是 , S3的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).

(1)請畫出△A1B1C1 , 使△A1B1C1與△ABC關(guān)于x軸對稱;
(2)將△ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2 , 并直接寫出點B旋轉(zhuǎn)到點B2所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知球O的半徑為1,A,B是球面上的兩點,且AB= ,若點P是球面上任意一點,則 的取值范圍是(
A.[ ]
B.[ , ]
C.[0, ]
D.[0, ]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R. (I)當a=3時,求關(guān)于x的不等式f(x)≤6的解集;
(II)當x∈R時,f(x)≥a2﹣a﹣13,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓M:(x﹣a)2+(y﹣b)2=9,M在拋物線C:x2=2py(p>0)上,圓M過原點且與C的準線相切. (Ⅰ)求C的方程;
(Ⅱ)點Q(0,﹣t)(t>0),點P(與Q不重合)在直線l:y=﹣t上運動,過點P作C的兩條切線,切點分別為A,B.求證:∠AQO=∠BQO(其中O為坐標原點).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 若對于任意兩個不等實數(shù)x1 , x2 , 都有 >1成立,則實數(shù)a的取值范圍是(
A.[1,3)
B.[ ,3)
C.[0,4)
D.[ ,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,E,F(xiàn)分別是AB,BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM.
(2)當AE=2時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于非零向量 、 下列條件中,不能判定 是平行向量的是(
A. ,
B. +3 = , =3
C. =﹣3
D.| |=3| |

查看答案和解析>>

同步練習(xí)冊答案