如圖,點(diǎn)A、C都在函數(shù)的圖象上,點(diǎn)B、D都在x軸上,使得△OAB、△BCD都是等邊三角形,且點(diǎn)D的坐標(biāo)為(4,0),則K=   
【答案】分析:根據(jù)等邊三角形的性質(zhì)得出AN,AM,ZC,CF的長(zhǎng),再利用反比例函數(shù)的性質(zhì)得出即可.
解答:解:作AM⊥BO,AN⊥y軸,CF⊥BD,CZ⊥ON,假設(shè)BO=2x,
∵△OAB、△BCD都是等邊三角形,且點(diǎn)D的坐標(biāo)為(4,0),
∴MO=x,AM=x,
∴ZC=4-=2+x,CF=(2-x),
∴K=AN×AM=ZC×CF,
x2=(2-x)(2+x),
解得:x2=2,
∴K=x2=2,
故答案為:2
點(diǎn)評(píng):此題主要考查了反比例函數(shù)的性質(zhì)以及等邊三角形的性質(zhì),根據(jù)已知表示出AN,AM,ZC,CF的長(zhǎng)是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、(1)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象開(kāi)口向下,并經(jīng)過(guò)點(diǎn)(-1,2),(1,0).下列命題其中一定正確的是
④⑤

(把你認(rèn)為正確結(jié)論的序號(hào)都填上,少填或錯(cuò)填不給分).
①當(dāng)x≥0時(shí),函數(shù)值y隨x的增大而增大
②當(dāng)x≤0時(shí),函數(shù)值y隨x的增大而減小
③存在一個(gè)正數(shù)m,使得當(dāng)x≤m時(shí),函數(shù)值y隨x的增大而增大;當(dāng)x≥m時(shí),函數(shù)值y隨x的增大而減小
④存在一個(gè)負(fù)數(shù)m,使得當(dāng)x≤m時(shí),函數(shù)值y隨x的增大而增大;當(dāng)x≥m時(shí),函數(shù)值y隨x的增大而減小,
⑤a+2b>-2c
(2)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線x=2與x軸相交于點(diǎn)B,連接OA,拋物線y=x2從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)M,使得線段PB最短;若存在,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo).若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在同一直角坐標(biāo)系中,二次函數(shù)的圖象與兩坐標(biāo)軸分別交于A(-1,0)、點(diǎn)B(3,0)和點(diǎn)C(0,-3),一次函數(shù)的圖象與拋物線交于B、C兩點(diǎn).
(1)二次函數(shù)的解析式為
 

(2)當(dāng)自變量x
 
時(shí),兩函數(shù)的函數(shù)值都隨x增大而增大;
(3)當(dāng)自變量
 
時(shí),一次函數(shù)值大于二次函數(shù)值;
(4)當(dāng)自變量x
 
時(shí),兩函數(shù)的函數(shù)值的積小于0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在同一坐標(biāo)系內(nèi),二次函數(shù)的圖象與兩坐標(biāo)軸分別交于點(diǎn)A(-1,0),點(diǎn)B(2,0)和點(diǎn)C(0,4),一次函數(shù)的圖象與拋物線交于B,C兩點(diǎn).
(1)二次函數(shù)的解析式為
 
;
(2)當(dāng)自變量x
 
時(shí),兩函數(shù)的函數(shù)值都隨x增大而減小;
(3)當(dāng)自變量x
 
時(shí),一次函數(shù)值大于二次函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•相城區(qū)一模)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)M(-2,-1),且P(-1,-2)為雙曲線上的一點(diǎn).
(1)求出正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(2)觀察圖象,寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若點(diǎn)Q在第一象限中的雙曲線上運(yùn)動(dòng),作以O(shè)P、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線l1的解析表達(dá)式為y=x+1,且l1與x軸交于點(diǎn)B(-1,0),與y軸交于點(diǎn)D.l2與y軸的交點(diǎn)為C(0,-3),直線l1、l2相交于點(diǎn)A(2,3),結(jié)合圖象解答下列問(wèn)題:
(1)S△ADC=
4
4
;直線l2表示的一次函數(shù)的解析式
y=3x-3
y=3x-3
;
(2)當(dāng)x為何值時(shí),l1、l2表示的兩個(gè)函數(shù)的函數(shù)值都大于0.
(3)在x軸的正半軸上是否存在點(diǎn)P,使得△ADP為等腰三角形?若存在,直接寫出所有點(diǎn)P的坐標(biāo);若不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案