【題目】小張騎自行車(chē)勻速?gòu)募椎氐揭业兀谕局行菹⒘?/span>-段時(shí)間后,仍按原速行駛他距乙地的距離與時(shí)間的關(guān)系如圖中折線(xiàn)所示,小李騎摩托車(chē)勻速?gòu)囊业氐郊椎兀刃埻沓霭l(fā)一段時(shí)間,他距乙地的距離與時(shí)間的關(guān)系如圖中線(xiàn)段AB所示,
(1)小李到達(dá)甲地后,再經(jīng)過(guò) 小時(shí)小張到達(dá)乙地;小張騎自行車(chē)的速度是 千米/小時(shí);
(2)請(qǐng)你寫(xiě)出小李距乙地的距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系(不要求寫(xiě)出定義域);
(3)若小李想在小張休息期間(第4小時(shí)和第5小時(shí)不算小張休息)與他相遇,則他出發(fā)的時(shí)間x應(yīng)在什么范圍?(直接寫(xiě)出答案)
【答案】(1)1,15;(2);(3).
【解析】
(1)由圖象看出所需時(shí)間和速度;
(2)先求出小李的速度,然后根據(jù)圖象可以得出結(jié)論;
(3)若在休息期間相遇直線(xiàn)AB必須與在4<x<5的線(xiàn)段相交,畫(huà)出圖形,求出取值范圍.
解:(1)根據(jù)題意可知,小李到達(dá)甲地后,再經(jīng)過(guò)1小時(shí)小張到達(dá)乙地;
由,得
小張騎自行車(chē)的速度是:千米/小時(shí);
故答案為:1,15;
(2)根據(jù)題意,小李從乙地到甲地,用兩小時(shí)走完了120千米,
∴小李的速度為:千米/小時(shí),
∴小李距乙地的距離y與時(shí)間x之間的函數(shù)關(guān)系為:;
(3)若小李想在小張休息期間(第4小時(shí)和第5小時(shí)不算小張休息)與他相遇,則如圖:
∵小張休息時(shí)走過(guò)的路程是:15×4=60(千米),
∴小李應(yīng)走的路程是:120-60=60(千米),
∴小李走60千米所需的時(shí)間是:60÷60=1(小時(shí));
若相遇時(shí)間在第4小時(shí),則小李出發(fā)時(shí)間為第3小時(shí);
若相遇時(shí)間在第5小時(shí),則小李出發(fā)時(shí)間為第4小時(shí);
∵第4小時(shí)和第5小時(shí)不算小張休息時(shí)間,
∴x的取值范圍是:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(a,b),B(1,6)為平面直角坐標(biāo)系內(nèi)兩點(diǎn),且a,b滿(mǎn)足b=﹣+2,AB的延長(zhǎng)線(xiàn)交y軸于點(diǎn)C.
(1)點(diǎn)A的坐標(biāo)為 (直接寫(xiě)出結(jié)果);
(2)如圖1,點(diǎn)P(m,4)為線(xiàn)段AB上的點(diǎn).
①點(diǎn)C坐標(biāo)為 (直接寫(xiě)出結(jié)果)
②求m的值;
(3)如圖2,若Q為第四象限直線(xiàn)AB上一點(diǎn),將QC繞Q點(diǎn)逆時(shí)針旋轉(zhuǎn)50°,交x軸負(fù)半軸于點(diǎn)D,在第二象限內(nèi)有點(diǎn)E,使x軸、y軸分別平分∠EDQ,∠ECQ,試求∠CED的度數(shù),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開(kāi)展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛(ài)好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加;@球隊(duì),請(qǐng)直接寫(xiě)出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB,CD相交于點(diǎn)O,OD平分∠BOE,OF平分∠AOE
(1)判斷OF與OD的位置關(guān)系,并進(jìn)行證明.
(2)若∠AOC:∠AOD=1:5,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)P在對(duì)角線(xiàn)AC上,且PA=PD,⊙O是△PAD的外接圓.
(1)求證:AB是⊙O的切線(xiàn);
(2)若AC=8,tan∠BAC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的一種健身產(chǎn)品在市場(chǎng)上受到普遍歡迎,每年可在國(guó)內(nèi)、國(guó)外市場(chǎng)上全部售完.該公司的年產(chǎn)量為6000件,若在國(guó)內(nèi)市場(chǎng)銷(xiāo)售,平均每件產(chǎn)品的利潤(rùn)與國(guó)內(nèi)銷(xiāo)售量的關(guān)系如下表:
銷(xiāo)售量(千件) | ||
單件利潤(rùn)(元) |
若在國(guó)外銷(xiāo)售,平均每件產(chǎn)品的利潤(rùn)與國(guó)外的銷(xiāo)售數(shù)量的關(guān)系如下表:
銷(xiāo)售量(千件) | ||
單件利潤(rùn)(元) | 100 |
(1)用的代數(shù)式表示為:=;
(2)該公司每年國(guó)內(nèi)、國(guó)外的銷(xiāo)售量各為多少時(shí),可使公司每年的總利潤(rùn)為60萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校舉行數(shù)學(xué)競(jìng)賽,需購(gòu)買(mǎi)兩種獎(jiǎng)品共160件,其中種獎(jiǎng)品的單價(jià)為12元,種獎(jiǎng)品的單價(jià)為8元,且購(gòu)買(mǎi)種獎(jiǎng)品的數(shù)量不大于種獎(jiǎng)品數(shù)量的3倍,假設(shè)購(gòu)買(mǎi)種獎(jiǎng)品的數(shù)量為件.
(1)根據(jù)題意填空:
購(gòu)買(mǎi)種獎(jiǎng)品的費(fèi)用為___(元);
購(gòu)買(mǎi)種獎(jiǎng)品的費(fèi)用為___(元);
(2)若購(gòu)買(mǎi)兩種獎(jiǎng)品所需的總費(fèi)用為元,試求與的函數(shù)關(guān)系式,并求出的取值范圍;
(3)問(wèn)兩種獎(jiǎng)品各購(gòu)買(mǎi)多少件時(shí)所需的總費(fèi)用最少,并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點(diǎn),延長(zhǎng)BG交AC于E、 F為AB上的一點(diǎn),CF⊥AD于H,下列判斷正確的有( )
A.AD是△ABE的角平分線(xiàn)B.BE是△ABD邊AD上的中線(xiàn)
C.AH為△ABC的角平分線(xiàn)D.CH為△ACD邊AD上的高
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,正方形ABCD中,AB=4cm,點(diǎn)P從點(diǎn)D出發(fā)沿DA向點(diǎn)A勻速運(yùn)動(dòng),速度是1cm/s,同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)沿AB方向,向點(diǎn)B勻速運(yùn)動(dòng),速度是2cm/s,連接PQ、CP、CQ,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2)
(1)是否存在某一時(shí)刻t,使得PQ∥BD?若存在,求出t值;若不存在,說(shuō)明理由
(2)設(shè)△PQC的面積為s(cm2),求s與t之間的函數(shù)關(guān)系式;
(3)如圖2,連接AC,與線(xiàn)段PQ相交于點(diǎn)M,是否存在某一時(shí)刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com