【題目】已知,如圖,a,b,c分別是ΔABC中∠A,∠B,∠C的對(duì)邊,P為BC上一點(diǎn),以AP為直徑的圓O交AB于D,PE∥AB交AC于E,b,c是方程x2+kx+9=0的兩根,且(b2+c2)(b2+c2-14)-72=0,銳角B的正弦值等于。

(1)求K的值;

(2)設(shè)BD=x,求四邊形ADPE的面積為S關(guān)于x的函數(shù)關(guān)系式;

(3)問(wèn)圓O是否能與BC相切?若能請(qǐng)求出x的值;若不能,請(qǐng)說(shuō)明理由。

【答案】(1)k=-6 (2)(3)能, .

【解析】試題分析:1)求出b2+c2=18,根據(jù)根與系數(shù)的關(guān)系求出b+c=-k,bc=9,代入得出方程(-k2-2×9=18,求出即可;
2)求出方程的解,得出AB=AC=3,根據(jù)sinB==,設(shè)PD=2yPD=3y,在RtBDP中,由勾股定理求出y=x,得出PD=2x,PB=3x,求出BC,根據(jù)CPE∽△CBA,得出比例式求出PE,代入S=PE+AD×PD求出即可;(3)根據(jù)圓的切線的性質(zhì),當(dāng)∠APB=90°時(shí),圓O能與BC相切,根據(jù)等腰三角形性質(zhì)得出BD=DC=,根據(jù)PB=3x=求出即可.

試題解析:(1)(b2+c2)(b2+c214)72=0,

(b2+c2)214(b2+c2)72=0,

解得:b2+c2=18,b2+c2=4(舍去),

b,c是方程x2+kx+9=0的兩根,

b+c=k,bc=9,

b2+c2=(b+c)22bc=18,

(k)22×9=18

解得:k=6,k=6

b+c=k,c、b是三角形的邊長(zhǎng),

k=6舍去,

k=6

(2)k=6代入方程得:x26x+9=0,

解得:x1=x2=3,

b=c=3,

AB=AC=3,

AP是直徑,

∴∠ADP=90=BDP,

sinB=

=,

設(shè)PD=y,BD=3y,RtBDP,由勾股定理得:PD2+BD2=PB2

(y)2+x2=(3y)2,

解得:y=x,

PD=x,PB=3x,

過(guò)AANBCN,

AB=3,sinB=

AN=,

由勾股定理得:BN=1

AB=AC,ANBC

CN=BN=1,

BC=2,

PEAB

CPECBA,

,

,

PE=x+3,

∴四邊形ADPE的面積S= (PE+ADPD=×(x+3+3xx=x2+x,

答:四邊形ADPE的面積為S關(guān)于x的函數(shù)關(guān)系式是S=x2+x.

(3)O能與BC相切,

理由是:根據(jù)圓的切線的性質(zhì),當(dāng)∠APB=90時(shí),圓O能與BC相切,

AP是直徑,

∴∠ADP=90,

AC=AB=3,BC=2

BD=DC=1,

(2)知:PB=3x=1,

x=,

答:圓O能與BC相切,x的值是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)等腰三角形的兩邊長(zhǎng)分別是2和4,則該等腰三角形的周長(zhǎng)為( 。
A.8或10
B.
8
C.10
D.6或12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,AE是過(guò)A的一條直線,且B,C在AE的異側(cè),BD⊥AE于點(diǎn)D,CE⊥AE于點(diǎn)E.

(1)求證:BD=DE+CE;
(2)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖2位置時(shí)(BD<CE),其余條件不變,問(wèn)BD與DE,CE的關(guān)系如何,請(qǐng)證明;
(3)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖3時(shí)(BD>CE),其余條件不變,BD與DE,CE的關(guān)系怎樣?請(qǐng)直接寫(xiě)出結(jié)果,不須證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(  )

A. 三角形的三條高至少有一條在三角形內(nèi)

B. 直角三角形只有一條高

C. 三角形的角平分線其實(shí)就是角的平分線

D. 三角形的角平分線、中線、高都在三角形的內(nèi)部

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于以BC為直徑的圓O,且AB=AD,延長(zhǎng)CB、DA交于P,當(dāng)PB=BO,CD=18時(shí),求:

(1)⊙O的半徑長(zhǎng);

(2)PA的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.若AC=8,AB=10,則CD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)等腰三角形的兩邊長(zhǎng)分別是3cm7cm,則它的周長(zhǎng)為(  )

A. 17cm B. 15cm C. 13cm D. 13cm17cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的直徑AB=12cm,CAB延長(zhǎng)線上一點(diǎn),CPO相切于點(diǎn)P,過(guò)點(diǎn)B作弦BDCP,連接PD

1)求證:點(diǎn)P的中點(diǎn);

2)若C=∠D,求四邊形BCPD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】9m8,3n2,則32mn的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案