18.若二次三項(xiàng)式kx2+mx+9是一個(gè)完全平方式,則k與m的關(guān)系是k=$\frac{{m}^{2}}{36}$.

分析 利用完全平方公式的特征判斷即可.

解答 解:∵二次三項(xiàng)式kx2+mx+9是一個(gè)完全平方式,
∴m=$±2×3\sqrt{k}$,
∴m=±6$\sqrt{k}$,
∴$k=\frac{{m}^{2}}{36}$.
故答案為:k=$\frac{{m}^{2}}{36}$.

點(diǎn)評(píng) 此題考查了完全平方式,熟練掌握完全平方公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.計(jì)算題
(1)-4-28-(-29)+(-24)
(2)-14-(1-0.5)+3×(1-7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在$\frac{1}{3}$$\sqrt{3ab}$,$\sqrt{(x+1)(x-1)}$,$\sqrt{0.5+0.75}$,$\sqrt{2a^3}$,$\sqrt{20}$,$\sqrt{a^2+b^2}$中,最簡(jiǎn)二次根式是$\frac{1}{3}$$\sqrt{3ab}$,$\sqrt{(x+1)(x-1)}$,$\sqrt{a^2+b^2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.化簡(jiǎn)下列各式:
(1)-$\sqrt{(\frac{1}{2})^{2}}$;
(2)$\sqrt{{3}^{-2}}$;
(3)$\sqrt{{x}^{2}}$;
(4)-$\sqrt{(1-\sqrt{2})^{2}}$;
(5)$\sqrt{{x}^{4}+2{x}^{2}+1}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.當(dāng)a>0,b>0時(shí),$\sqrt{a^{3}}$-2$\sqrt{\frac{a}}$+$\sqrt{ab}$=(b-$\frac{2}{a}$+1)$\sqrt{ab}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知x2-xy-2y2=0.且x>0,y>0,求$\frac{x+y}{x-y}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.用代入消元法解下列方程組;
(1)$\left\{\begin{array}{l}{x=2y}\\{2y+x=16}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+y=3}\\{2x+3y=15}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若α<60°,且sin(60°-α)=$\frac{4}{5}$,則cos(30°+α)=$\frac{4}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,已知在梯形ABCD中,AB∥CD,點(diǎn)E和點(diǎn)F分別在AD和BC上,EF是梯形ABCD的中位線(xiàn),若$\overrightarrow{EF}=\vec a$,$\overrightarrow{DC}=\vec b$,則用$\vec a,\vec b$表示$\overrightarrow{AB}$=2$\overrightarrow{a}$-$\overrightarrow$.

查看答案和解析>>

同步練習(xí)冊(cè)答案