【題目】如圖,拋物線C1:y=mx2﹣2mx﹣3m(m<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)D,頂點(diǎn)為M,另一條拋物線C2與x軸也交于A、B兩點(diǎn),且與y軸的交點(diǎn)是C(0,),頂點(diǎn)是N.
(1)求A,B兩點(diǎn)的坐標(biāo).
(2)求拋物線C2的函數(shù)表達(dá)式.
(3)是否存在m,使得△OBD與△OBC相似?若存在,請(qǐng)求出m的值;若不存在請(qǐng)說明理由.
【答案】(1)A(﹣1,0),B(3,0);(2)y=.(3)m的值為﹣或﹣2.
【解析】
(1)解方程mx2﹣2mx﹣3m=0可得到A,B兩點(diǎn)的坐標(biāo);
(2)設(shè)交點(diǎn)式y=a(x+1)(x﹣3),然后把C點(diǎn)坐標(biāo)代入求出a得到拋物線C2的表達(dá)式;
(3)分兩種情況考慮:當(dāng)△OBD∽△OBC或△ODB∽△OBC時(shí),求出OD長(zhǎng),得到m的值.
(1)當(dāng)y=0時(shí),mx2﹣2mx﹣3m=0,
∵x2﹣2x﹣3=0,
∴x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0);
(2)設(shè)拋物線C2的表達(dá)式為y=a(x+1)(x﹣3),
把C(0,﹣)代入,得a×1×(-3)=-,
解得a=,
∴拋物線C2的函數(shù)表達(dá)式為y=(x+1)(x-3),
即y=x2-x-.
(3)當(dāng)△OBD∽△OBC時(shí),= ,
∴OC=OD,
∴D(0,).
∴ -3m=,
∴m=﹣,
當(dāng)△ODB∽△OBC時(shí),
=,
∴OD=9,
∴OD=6,
∴D(0,6),
∴﹣3m=6,
∴m=﹣2,
綜合以上可得m的值為﹣或﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個(gè)銷售旺季的80天里,銷售單價(jià)p(元/千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系為:,日銷售量y(千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系如圖所示:
(1)求日銷售量y與時(shí)間t的函數(shù)關(guān)系式?
(2)哪一天的日銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)該養(yǎng)殖戶有多少天日銷售利潤(rùn)不低于2400元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知正方形ABCD在直線MN的上方BC在直線MN上,E是BC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并直接寫出∠FCN的度數(shù)(不要寫出解答過程)
(3)如圖(2),將圖中正方形ABCD改為矩形ABCD,AB=6,BC=8,E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)E由B向C運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變,若∠FCN的大小不變,請(qǐng)求出tan∠FCN的值.若∠FCN的大小發(fā)生改變,請(qǐng)舉例說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對(duì)稱軸上是否存在一點(diǎn)M,使△ANM的周長(zhǎng)最。舸嬖冢(qǐng)求出M點(diǎn)的坐標(biāo)和△ANM周長(zhǎng)的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F是正方形ABCD對(duì)角線AC上的兩點(diǎn),且,連接BE、DE、BF、DF.
求證:四邊形BEDF是菱形:
求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過點(diǎn)、.是線段上一動(dòng)點(diǎn)(點(diǎn)不與、重合),過點(diǎn)作軸的垂線交拋物線于點(diǎn),交線段于點(diǎn).過點(diǎn)作,垂足為點(diǎn).
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/18/2206393160556544/2207286529548288/STEM/a9696d0cbdac438aa94c80bfc838afd4.png]
(1)求該拋物線的解析式;
(2)試求線段的長(zhǎng)關(guān)于點(diǎn)的橫坐標(biāo)的函數(shù)解析式,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn).
(1)求該拋物線的解析式;
(2)拋物線的對(duì)稱軸上是否存在一點(diǎn),使的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
(3)設(shè)拋物線上有一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)在該拋物線上滑動(dòng)到什么位置時(shí),滿足,并求出此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全區(qū)3000名九年級(jí)學(xué)生英語聽力口語自動(dòng)化考試成績(jī)的情況,隨機(jī)抽取了部分學(xué)生的成績(jī)(滿分30分且得分均為整數(shù)),制成下表:
分?jǐn)?shù)段(x分分) | 0≤x≤18 | 19≤x≤21 | 22≤x≤24 | 25≤x≤27 | 28≤x≤30 |
人數(shù) | 10 | 15 | 35 | 112 | 128 |
(1)填空:
①本次抽樣調(diào)查共抽取了 名學(xué)生;
②學(xué)生成績(jī)的中位數(shù)所在的分?jǐn)?shù)段是 ;
③若用扇形統(tǒng)計(jì)圖表示統(tǒng)計(jì)結(jié)果,則分?jǐn)?shù)段為0≤x≤18的人數(shù)所對(duì)應(yīng)扇形的圓心角為 °;
(2)如果將25分以上(含25分)定為優(yōu)秀,請(qǐng)估計(jì)全區(qū)九年級(jí)考生成績(jī)?yōu)閮?yōu)秀的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com