【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的點D處測得樓頂B的仰角為45°,其中點A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號)
【答案】
(1)
解:在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,
∴DE= DC=2米
(2)
解:過D作DF⊥AB,交AB于點F,
∵∠BFD=90°,∠BDF=45°,
∴∠BFD=45°,即△BFD為等腰直角三角形,
設(shè)BF=DF=x米,
∵四邊形DEAF為矩形,
∴AF=DE=2米,即AB=(x+2)米,
在Rt△ABC中,∠ABC=30°,
∴BC= = = = 米,
BD= BF= x米,DC=4米,
∵∠DCE=30°,∠ACB=60°,
∴∠DCB=90°,
在Rt△BCD中,根據(jù)勾股定理得:2x2= +16,
解得:x=4+4 ,
則AB=(6+4 )米.
【解析】(1)在直角三角形DCE中,利用銳角三角函數(shù)定義求出DE的長即可;(2)過D作DF垂直于AB,交AB于點F,可得出三角形BDF為等腰直角三角形,設(shè)BF=DF=x,表示出BC,BD,DC,由題意得到三角形BCD為直角三角形,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,即可確定出AB的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,CE⊥AB交AB延長線于點E,點F為點B關(guān)于CE的對稱點,連接CF,分別延長DC,CF至點G,H,使FH=CG,連接AG,DH交于點P.
(1)依題意補全圖1;
(2)猜想AG和DH的數(shù)量關(guān)系并證明;
(3)若∠DAB=70°,是否存在點G,使得△ADP為等邊三角形?若存在,求出CG的長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,……按此規(guī)律,則第50個圖形中面積為1的正方形的個數(shù)為( 。
A. 1322 B. 1323 C. 1324 D. 1325
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺組織知識競賽,共設(shè)20道選擇題,各題分值相同,每題必答。下表記錄了5個參賽者的得分情況.
(1)參賽者F得76分,他答對了幾道題?
(2)參考者G說他得80分,你認為可能嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道:|5﹣(﹣2)|表示5與﹣2之差的絕對值,實際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對應(yīng)的兩點之間的距離.請你借助數(shù)軸進行以下探索:
(1)數(shù)軸上表示5與﹣2兩點之間的距離是
(2)數(shù)軸上表示x與2的兩點之間的距離可以表示為 .
(3)同理|x+3|+|x﹣1|表示數(shù)軸上有理數(shù)x所對應(yīng)的點到﹣3和1所對應(yīng)的點的距離之和,請你找出所有符合條件的整數(shù)x,使得|x+3|+|x﹣1|=4,這樣的整數(shù)是 .
(4)由以上探索猜想|x+10|+|x+2|+|x﹣8|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.
(5)由以上探索猜想|x+10|+|x+2|+|x﹣8|+|x﹣10|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的解析式為y=ax2 , 過點B1(1,0)作x軸的垂線,交拋物線于點A1(1,2);過點B2( ,0)作x軸的垂線,交拋物線于點A2;…;過點Bn(( )n﹣1 , 0)(n為正整數(shù))作x軸的垂線,交拋物線于點An , 連接AnBn+1 , 得Rt△AnBnBn+1 .
(1)求a的值;
(2)直接寫出線段AnBn , BnBn+1的長(用含n的式子表示);
(3)在系列Rt△AnBnBn+1中,探究下列問題:
①當n為何值時,Rt△AnBnBn+1是等腰直角三角形?
②設(shè)1≤k<m≤n(k,m均為正整數(shù)),問:是否存在Rt△AkBkBk+1與Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李剛家去年養(yǎng)殖的“豐收一號”多寶魚喜獲豐收,上市20天全部售完,李剛對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖所示.
(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求李剛家多寶魚的日銷售量y與上市時間x的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若點A在數(shù)軸上對應(yīng)的數(shù)為a,點B在數(shù)軸上對應(yīng)的數(shù)為b,且a,b滿足|a+2|+(b﹣1)2=0.
(1)求線段AB的長;
(2)點C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程2x﹣1=x+2的解,在數(shù)軸上是否存在點P,使PA+PB=PC,若存在,直接寫出點P對應(yīng)的數(shù);若不存在,說明理由;
(3)在(1)的條件下,將點B向右平移5個單位長度至點B’,此時在原點O處放一擋板,一小球甲從點A處以1個單位長度/秒的速度向左運動;同時另一小球乙從點B’處以2個單位長度/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為t(秒),求甲、乙兩小球到原點的距離相等時經(jīng)歷的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com