【題目】如圖,等邊ABC內(nèi)接于⊙OP是弧AB上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),連接AP、BP,過(guò)點(diǎn)CCMBPPA的延長(zhǎng)線于點(diǎn)M

1)求∠APC的度數(shù).

2)求證:PCM為等邊三角形.

3)若PA1,PB3,求PCM的面積.

【答案】1)∠APC60°;(2)見解析;(3SPCM=4

【解析】

1)利用同弧所對(duì)的圓周角相等即可求得題目中的未知角;
2)利用同弧所對(duì)的圓周角相等即可求得題目中的未知角,進(jìn)而判定PCM為等邊三角形;
2)利用上題中得到的相等的角和等邊三角形中相等的線段證得兩三角形全等,進(jìn)而利用PCM為等邊三角形,進(jìn)而求得PH的長(zhǎng),利用三角形的面積公式計(jì)算即可.

1)∵△ABC是等邊三角形,

∴∠ABC60°,

∴∠APC=∠ABC60°;

2)∵∠BPC=∠BAC60°,

CMBP,

∴∠PCM=∠BPC60°,

又由(1)得∠APC60°,

PCM為等邊三角形;

3)解:∵△ABC是等邊三角形,PCM為等邊三角形,

∴∠PCA+ACM=∠BCP+PCA,

∴∠BCP=∠ACM

BCPACM中,

,

∴△BCP≌△ACMSAS),

CMCP,AMBP3,

CMPM1+34

PHCMH,

RtPMH中,∠PMH60°,PM4,

PH2 ,

SPCMPHCM×4×24

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l與直線,直線分別交于點(diǎn)AB,直線與直線交于點(diǎn)

1)求直線軸的交點(diǎn)坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記線段圍成的區(qū)域(不含邊界)為

當(dāng)時(shí),結(jié)合函數(shù)圖象,求區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);

若區(qū)域內(nèi)沒(méi)有整點(diǎn),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+2ax+c的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB4,與y軸交于點(diǎn)COCOA,點(diǎn)D為拋物線的頂點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)Mm,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)PPQAB交拋物線于點(diǎn)Q,過(guò)點(diǎn)QQNx軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),求m的值,并求出此時(shí)的AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ,過(guò)拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方),FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACO的直徑,弦BDAOE,連接BC,過(guò)點(diǎn)OOFBCF,若BD16cm,AE4cm

1)求O的半徑;

2)求OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),且

(1)求拋物線的解析式和頂點(diǎn)的坐標(biāo);

(2)判斷的形狀,證明你的結(jié)論;

(3)點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的頂點(diǎn),,,規(guī)定把正方形ABCD先沿x軸翻折,再向左平移1個(gè)單位長(zhǎng)度為一次變換,如此這樣,連續(xù)經(jīng)過(guò)2019次變換后,正方形ABCD的對(duì)角線的交點(diǎn)M的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC5,以AB為一邊向三角形外作正方形ABEF,正方形的中心為O, ,則BC邊的長(zhǎng)為_

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】互聯(lián)網(wǎng)+”時(shí)代,網(wǎng)上購(gòu)物備受消費(fèi)者青睞.某網(wǎng)店專售一款休閑褲,其成本為每條40元,當(dāng)售價(jià)為每條80元時(shí),每月可銷售100條.為了吸引更多顧客,該網(wǎng)店采取降價(jià)措施.據(jù)市場(chǎng)調(diào)查反映:銷售單價(jià)每降1元,則每月可多銷售5條.設(shè)每條褲子的售價(jià)為(為正整數(shù)),每月的銷售量為條.

(1)直接寫出的函數(shù)關(guān)系式;

(2)設(shè)該網(wǎng)店每月獲得的利潤(rùn)為元,當(dāng)銷售單價(jià)降低多少元時(shí),每月獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤(rùn)中捐出200元資助貧困學(xué)生.為了保證捐款后每月利潤(rùn)不低于4220元,且讓消費(fèi)者得到最大的實(shí)惠,該如何確定休閑褲的銷售單價(jià)?

查看答案和解析>>

同步練習(xí)冊(cè)答案