精英家教網 > 初中數學 > 題目詳情
(1998•寧波)A,∠B為Rt△ABC的兩個銳角,且sinA,cosB是方程的兩個實根.求m的值及∠A,∠B的度數.
【答案】分析:根據三角函數的定義知sinA=cosB,由根與系數的關系得,sinA+cosB=,解得sinA=cosB=,求出∠A,∠B的度數,由兩根之積求得m的值.
解答:解:∵∠A,∠B為Rt△ABC的兩個銳角,∴sinA=cosB,
∵sinA,cosB是方程的兩個實根,
∴sinA+cosB=,解得sinA=cosB=,∴∠A=∠B=45°,
∴sinA•cosB=m,∴m=
點評:本題綜合考查了三角函數與一元二次方程,解這類題的關鍵是利用直角三角形,用三角函數來尋求未知系數的等量關系.
練習冊系列答案
相關習題

科目:初中數學 來源:1998年全國中考數學試題匯編《二次函數》(01)(解析版) 題型:解答題

(1998•寧波)如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標分別為x1,x2,且x1>0,x2>0,正方形ABCD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設,求sin∠E和k.
((2),(3)的結果都用含m的代數式表示)

查看答案和解析>>

科目:初中數學 來源:1998年全國中考數學試題匯編《二次函數》(01)(解析版) 題型:解答題

(1998•寧波)如圖,在直角坐標系中,OA=OC,AB=4,tan∠BCO=,二次函數y=ax2+bx+c圖象經過A、B、C三點.
(1)求A,B,C三點的坐標;
(2)求二次函數的解析式;
(3)求過點A、B和拋物線頂點D的圓的半徑.

查看答案和解析>>

科目:初中數學 來源:1999年浙江省寧波市中考數學試卷(解析版) 題型:解答題

(1998•寧波)如圖,在直角坐標系中,OA=OC,AB=4,tan∠BCO=,二次函數y=ax2+bx+c圖象經過A、B、C三點.
(1)求A,B,C三點的坐標;
(2)求二次函數的解析式;
(3)求過點A、B和拋物線頂點D的圓的半徑.

查看答案和解析>>

科目:初中數學 來源:1998年浙江省寧波市中考數學試卷 題型:解答題

(1998•寧波)如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標分別為x1,x2,且x1>0,x2>0,正方形ABCD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設,求sin∠E和k.
((2),(3)的結果都用含m的代數式表示)

查看答案和解析>>

科目:初中數學 來源:1998年全國中考數學試題匯編《數據收集與處理》(01)(解析版) 題型:填空題

(1998•寧波)測量某班50名學生的身高,得身高在1.60m以下的頻率是0.4,則該班身高在1.60m以下的學生有    人.

查看答案和解析>>

同步練習冊答案