【題目】如圖1,2,3分別以△ABC的AB和AC為邊向△ABC外作正三角形(等邊三角形)、正四邊形(正方形)、正五邊形,BE和CD相交于點O.

(1)在圖1中,求證:△ABE≌△ADC.
(2)由(1)證得△ABE≌△ADC,由此可推得在圖1中∠BOC=120°,請你探索在圖2中,∠BOC的度數(shù),并說明理由或?qū)懗鲎C明過程.
(3)填空:在上述(1)(2)的基礎上可得在圖3中∠BOC=(填寫度數(shù)).
(4)由此推廣到一般情形(如圖4),分別以△ABC的AB和AC為邊向△ABC外作正n邊形,BE和CD仍相交于點O,猜想得∠BOC的度數(shù)為(用含n的式子表示).

【答案】
(1)

證明:如圖1,∵△ABD和△ACE是等邊三角形,

∴AB=AD,AC=AE,∠DAB=∠EAC=60°,

∴∠DAB+∠BAC=∠EAC+∠BAC,

即∠DAC=∠BAE,

∴△ABE≌△ADC


(2)

證明:如圖2,∠BOC=90°,理由是:

∵四邊形ABFD和四邊形ACGE都是正方形,

∴AB=AD,AC=AE,∠DAB=∠EAC=90°,

∴∠BAE=∠DAC,

∴△ADC≌△ABE,

∴∠BEA=∠DCA,

∵∠EAC=90°,

∴∠AMC+∠DCA=90°,

∵∠BOC=∠OME+∠BEA=∠AMC+∠DCA,

∴∠BOC=90°


(3)72°
(4)
【解析】證明:(3)如圖3,同理得:△ADC≌△ABE,
∴∠BEM=∠DCA,
∵∠BOC=∠BEM+∠OME=∠DCA+∠AMC,
∵正五邊形ACIGE,
∴∠EAC=180°﹣ =108°,
∴∠DCA+∠AMC=72°,
∴∠BOC=72°;
故答案為:72°;
4)如圖4,∠BOC的度數(shù)為 ,理由是:
同理得:△ADC≌△ABE,
∴∠BEA=∠DCA,
∵∠BOC=∠BEA+∠OME=∠DCA+∠AMC,
∵正n邊形AC…E,
∴∠EAC=180°﹣
∴∠DCA+∠AMC=180°﹣(180﹣ )°,
∴∠BOC=


(1)根據(jù)等邊三角形證明AB=AD,AC=AE,再利用等式性質(zhì)得∠DAC=∠BAE,根據(jù)SAS得出△ABE≌△ADC;(2)根據(jù)正方形性質(zhì)證明△ABE≌△ADC,得∠BEA=∠DCA,再由正方形ACEG的內(nèi)角∠EAC=90°和三角形外角和定理得∠BOC=90°;(3)根據(jù)正五邊形的性質(zhì)證明:△ADC≌△ABE,再計算五邊形每一個內(nèi)角的度數(shù)為108°,由三角形外角定理求出∠BOC=72°;(4)根據(jù)正n邊形的性質(zhì)證明:△ADC≌△ABE,再計算n邊形每一個內(nèi)角的度數(shù)為180°﹣ ,由三角形外角定理求出∠BOC= .本題是四邊形的綜合題,考查了全等三角形、等邊三角形、正四邊形等圖形的性質(zhì),關鍵是利用正n邊形各邊相等證明兩三角形全等,運用了類比的方法,同時還要熟練掌握正n邊形每一個內(nèi)角的求法:可以利用外角和求,也可以利用內(nèi)角和求;根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和列式并綜合對頂角相等分別得出結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習過程中,對教材中的一個有趣問題做如下探究:

(習題回顧)已知:如圖1,在△ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點F.求證:∠CFE=CEF;

(變式思考)如圖2,在△ABC中,∠ACB=90°,CDAB邊上的高,若△ABC的外角∠BAG的平分線交CD的延長線于點F,其反向延長線與BC邊的延長線交于點E,則∠CFE與∠CEF還相等嗎?說明理由;

(探究廷伸)如圖3,在△ABC中,在AB上存在一點D,使得∠ACD=B,角平分線AECD于點F.ABC的外角∠BAG的平分線所在直線MNBC的延長線交于點M.試判斷∠M與∠CFE的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為△ABD的外接圓上的一動點(點C不在 上,且不與點B,D重合),∠ACB=∠ABD=45°
(1)求證:BD是該外接圓的直徑;
(2)連結CD,求證: AC=BC+CD;
(3)若△ABC關于直線AB的對稱圖形為△ABM,連接DM,試探究DM2 , AM2 , BM2三者之間滿足的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】試找出如圖所示的每個正多邊形的對稱軸的條數(shù),并填入表格中.

正多邊形的邊數(shù)

3

4

5

6

7

8

對稱軸的條數(shù)

根據(jù)上表,請就一個正n邊形對稱軸的條數(shù)作一猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點E,F(xiàn),且∠EAF=60°.
(1)如圖1,當點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關系;
(2)如圖2,當點E是線段CB上任意一點時(點E不與B、C重合),求證:BE=CF;
(3)如圖3,當點E在線段CB的延長線上,且∠EAB=15°時,求點F到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當?shù)臈l件: , 使△AEH≌△CEB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題引入:

(1)如圖①,在△ABC中,點O是∠ABC和∠ACB平分線的交點,若∠A=α,則∠BOC=(用α表示);如圖②,∠CBO= ∠ABC,∠BCO= ∠ACB,∠A=α,則∠BOC=(用α表示)拓展研究:
(2)如圖③,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=(用α表示),并說明理由.
類比研究:
(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點O,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣ [(x﹣2)2+n]與x軸交于點A(m﹣2,0)和B(2m+3,0)(點A在點B的左側),與y軸交于點C,連結BC.

(1)求m、n的值;
(2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1、圖2中,點C為線段AB上一點,△ACM△CBN都是等邊三角形.

(1) 如圖1,線段AN與線段BM是否相等?證明你的結論;

(2) 如圖2,ANMC交于點E,BMCN交于點F,探究△CEF的形狀,并證明你的結論.

圖1 圖2

查看答案和解析>>

同步練習冊答案