【題目】如圖,P是矩形ABCD的對(duì)角線AC的中點(diǎn),E是AD的中點(diǎn).若AB=6,AD=8,則四邊形ABPE的周長(zhǎng)為( 。
A.14
B.16
C.17
D.18
【答案】D
【解析】解:∵四邊形ABCD是矩形,
∴∠ABC=90°,CD=AB=6,BC=AD=8,
∴AC===10,
∴BP=AC=5,
∵P是矩形ABCD的對(duì)角線AC的中點(diǎn),E是AD的中點(diǎn),
∴AE=AD=4,PE是△ACD的中位線,
∴PE=CD=3,
∴四邊形ABPE的周長(zhǎng)=AB+BP+PE+AE=6+5+3+4=18;
故選:D.
由矩形的性質(zhì)得出∠ABC=90°,CD=AB=6,BC=AD=8,由勾股定理求出AC,由直角三角形斜邊上的中線性質(zhì)得出BP,證明PE是△ACD的中位線,由三角形中位線定理得出PE=CD=3,四邊形ABPE的周長(zhǎng)=AB+BP+PE+AE,即可得出結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果點(diǎn)P(a+1,a-1)在x軸上,那么點(diǎn)P的坐標(biāo)為( )
A. (-2,0) B. (2,0) C. (0,-2) D. (0,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列拋物線中,過(guò)原點(diǎn)的拋物線是( )
A.y=x2﹣1
B.y=(x+1)2
C.y=x2+x
D.y=x2﹣x﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,錯(cuò)誤的是( )
A.菱形的對(duì)角線互相垂直B.平行四邊形的對(duì)角線互相平分
C.對(duì)角線相等的四邊形是矩形D.對(duì)角線互相垂直平分的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用三個(gè)正多邊形鑲嵌成一個(gè)平面時(shí),若前兩種是正方形和正六邊形,則第三種是( 。
A. 正十二邊形 B. 正十邊形 C. 正八邊形 D. 正三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若以A(-0.5,0)、B(2,0)、C(0,1)三點(diǎn)為頂點(diǎn)要畫(huà)平行四邊形,則第四個(gè)頂點(diǎn)不可能在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題是真命題的是( )
A.經(jīng)過(guò)平面內(nèi)任意三點(diǎn)可作一個(gè)圓
B.相等的圓心角所對(duì)的弧一定相等
C.相交兩圓的公共弦一定垂直于兩圓的連心線
D.內(nèi)切兩圓的圓心距等于兩圓的半徑的和
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)上的一個(gè)動(dòng)點(diǎn),連接OA,過(guò)點(diǎn)O作OB⊥OA,并且使OB=2OA,連接AB,當(dāng)點(diǎn)A在反比函數(shù)圖象上移動(dòng)時(shí),點(diǎn)B也在某一反比例函數(shù)圖象上移動(dòng), 的值為( )
A. 2 B. -2 C. 4 D. -4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com