【題目】如圖,在ABC中,DBC的中點,DEBCAC于點E,已知AD=AB,連接BEAD于點F,下列結(jié)論:①BE=CE;②∠CAD=ABESABF=3SDEF;④△DEF∽△DAE,其中正確的有(  。

A. 1 B. 4 C. 3 D. 2

【答案】C

【解析】∵DBC的中點,且DE⊥BC,

∴DEBC的垂直平分線,CD=BD,

∴CE=BE,故本答案正確;

∴∠C=∠7

∵AD=AB,

∴∠8=∠ABC=∠6+∠7,

∵∠8=∠C+∠4,

∴∠C+∠4=∠6+∠7,

∴∠4=∠6,即∠CAD=∠ABE,故本答案正確;

AG⊥BD于點G,交BE于點H,

∵AD=AB,DE⊥BC,

∴∠2=3,DG=BG=BD,DEAG,

∴CDE△∽△CGA,△BGH∽△BDE,EH=BH,∠EDA=∠3,∠5=∠1,

CDCG=DEAG,HG=DE

設(shè)DG=x,DE=y,則GB=x,CD=2x,CG=3x

∴2x:3x=2y:AG,

解得:AG=3y,HG=y

∴AH=2y

∴DE=AH,且∠EDA=∠3,∠5=∠1

∴DEF△≌△AHF

EF=HF=EH,且EH=BH,

∴EF:BF=1:3,

∴S△ABF=3S△AEF,

∵S△DEF=S△AEF,

∴S△ABF=3S△DEF,故本答案正確;

∵∠1=∠2+∠6,且∠4=∠6,∠2=∠3,

∴∠5=∠3+∠4,

∴∠5≠∠4,

∴△DEF∽△DAE,不成立,故本答案錯誤,

綜上所述:正確的答案有3個,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2x+cx軸相交于A、B兩點,并與直線y=x﹣2交于B、C兩點,其中點C是直線y=x﹣2y軸的交點,連接AC.

(1)求拋物線的解析式;

(2)證明:△ABC為直角三角形;

(3)ABC內(nèi)部能否截出面積最大的矩形DEFG?(頂點D、E、F、G在△ABC各邊上)若能,求出最大面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC的垂直平分線MNAB于點DCD平分∠ACB.若AD2,BD3,則AC的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABACADBC邊的中線,過點ABC的平行線,過點BAD的平行線,兩線交于點E

1)求證:四邊形ADBE是矩形;

2)連接DE,交AB與點O,若BC8,AO3,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+2與x軸交于A,B兩點,與y軸交于C點,且點A的坐標(biāo)為(1,0).

(1)求拋物線的解析式及頂點D的坐標(biāo);

(2)判斷ABC的形狀,并證明你的結(jié)論;

(3)點M是拋物線對稱軸上的一個動點,當(dāng)ACM的周長最小時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車公司有甲、乙兩種貨車可供租用,現(xiàn)有一批貨物要運往某地,貨主準(zhǔn)備租用該公司貨車,已知以往甲、乙兩種貨車運貨情況如下表:

1)甲、乙兩種貨車每輛可裝多少噸貨物?

2)若貨主需要租用該公司的甲種貨車8輛,乙種貨車6輛,剛好運完這批貨物,如按每噸付運費50元,則貨主應(yīng)付運費總額為多少元?

3)若貨主共有20噸貨,計劃租用該公司的貨車正好(每輛車都滿載)把這批貨運完,該汽車公司共有哪幾種運貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,點A、點C分別在y軸、x軸的正半軸上,OA,OC的長分別是方程x2-7x+12=0的兩根(OAOC).P為直線AB上一動點,直線PQOP交直線BC于點Q

1)求點B的坐標(biāo);

2)當(dāng)點P在線段AB上運動(不與A,B重合)時,設(shè)點P的橫坐標(biāo)為m,線段CQ的長度為l.求出l關(guān)于m的函數(shù)解析式;

3)在坐標(biāo)平面內(nèi)是否存在點D,使以O、P、Q、D為頂點的四邊形為正方形?若存在,請直接寫出D點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,線段AB上有兩個點C、D,請計算圖中共有多少條線段?

2)如果線段上有m個點(包括線段的兩個端點),則該線段上共有多少條線段?

3)拓展應(yīng)用:8個班級參加學(xué)校組織的籃球比賽,比賽采用單循環(huán)制(即每兩個班級之間都要進(jìn)行一場比賽),那么一共要進(jìn)行多少場比賽?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,ECA延長線上一點,DAB上一點,F外一點且連接DF,BF.

(1)當(dāng)的度數(shù)是多少時,四邊形ADFE為菱形,請說明理由:

(2)當(dāng)AB= 時,四邊形ACBF為正方形(請直接寫出)

查看答案和解析>>

同步練習(xí)冊答案