兩數(shù)相乘,同號得(    ),異號得(    ),并把絕對值相乘,任何數(shù)與零相乘都得(    )。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀理解下面的例題,再按要求解答:
例題:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式組(1),得x>3,
解不等式組(2),得x<-3,
故(x+3)(x-3)>0的解集為x>3或x<-3,
即一元二次不等式x2-9>0的解集為x>3或x<-3.
問題:求分式不等式
5x+1
2x-3
<0
的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀理解下列例題,再按要求完成作業(yè).
例題:解一元二次不等式(3x-2)(2x+1)>0.
解:由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”有①
3x-2>0
2x+1>0
或②
3x-2<0
2x+1<0
解不等式組①得x>
2
3
,解不等式組②得x<-
1
2

所以一元二次不等式(3x-2)(2x+1)>0的解集是x>
2
3
或x<-
1
2

作業(yè)題:(1)求不等式
5x+1
2x-3
<0的解集;
(2)通過閱讀例題和做作業(yè)題(1),你學(xué)會了什么知識和方法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•湛江)先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2-4>0
解:∵x2-4=(x+2)(x-2)
∴x2-4>0可化為
(x+2)(x-2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,得
x+2>0
x-2>0
 
x+2<0
x-2<0

解不等式組①,得x>2,
解不等式組②,得x<-2,
∴(x+2)(x-2)>0的解集為x>2或x<-2,
即一元二次不等式x2-4>0的解集為x>2或x<-2.
(1)一元二次不等式x2-16>0的解集為
x>4或x<-4
x>4或x<-4

(2)分式不等式
x-1
x-3
>0
的解集為
x>3或x<1
x>3或x<1
;
(3)解一元二次不等式2x2-3x<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀理解下面的例題,再按要求完成問題.
例題:解一元二次不等式x2-9>0.
解:把x2-9分解因式,得:(x+3)(x-3)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”有(1)
x+3>0
x-3>0
或(2)
x+3<0
x-3<0

解不等式組(1),得x>3;解不等式組(2),得x<-3
所以x2-9>0的解集為x>3或x<-3.
請你根據(jù)上面的解法,求分式不等式
x+1
x-1
<0
的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得
.任何數(shù)與0相乘都得
0
0
.幾個不等于0的數(shù)相乘,積的符號由
負因數(shù)
負因數(shù)
的個數(shù)決定,當負因數(shù)有
數(shù)個時,積為負,當負因數(shù)有
數(shù)個時,積為正.

查看答案和解析>>

同步練習(xí)冊答案