如圖,拋物線y=ax2+c經(jīng)過點B1(1,),B2(2,).在該拋物線上取點B3(3,y3),B4(4,y4),…,B100(100,y100),在x軸上依次取點A1,A2,A3,…,A100,使△A1B1A2,△A2B2A3,△A3B3A4,…,△A100B100A101分別是以∠B1,∠B2,…,∠B100為頂角的等腰三角形,設A1的橫坐標為t(0<t<1).
(1)求該拋物線的解析式;
(2)記△A1B1A2,△A2B2A3,△A3B3A4,…,A100B100A101的面積分別為S1,S2,…,S100,用含t的代數(shù)式分別表示S1,S2和S100
(3)在所有等腰三角形中是否存在直角三角形?若存在,請直接寫出t的值;若不存在,請說明理由.

【答案】分析:(1)把點B1(1,),B2(2,)代入拋物線解析式得到關于a、c的二元一次方程組,解方程組求出a、c的值,即可得解;
(2)根據(jù)點A1的坐標利用等腰三角形三線合一的性質(zhì)分別求出A2、A3的坐標,然后求出A1A2、A2A3的長度,再根據(jù)三角形的面積公式列式計算即可求出S1、S2,依此類推求出求出A3A4、A4A5的長度,然后得出規(guī)律并表示出A100A101的長度,再把x=100代入拋物線解析式求出y100,然后根據(jù)三角形的面積公式列式計算即可得解;
(3)按照從左到右的順序,依次令三角形為等腰直角三角形,然后根據(jù)等腰直角三角形的斜邊上的中線等于斜邊的一半列式求解得到t的值,再根據(jù)t的取值范圍進行判斷.
解答:解:(1)∵拋物線y=ax2+c經(jīng)過點B1(1,),B2(2,),
,
解得,
所以,拋物線解析式為y=x2+;

(2)∵A1的橫坐標為t,△A1B1A2,△A2B2A3,△A3B3A4是等腰三角形,
∴A2(2-t,0),A3(2+t,0),
∴A1A2=(2-t)-t=2-2t,A2A3=(2+t)-(2-t)=2t,
∴S1=×(2-2t)×=,S2=×2t×=t,
依此類推,A4(4-t,0),A5(4+t,0),A6(6-t,0),A7(6+t,0),…,
∴A3A4=(4-t)-(2+t)=2-2t,A4A5=(4+t)-(4-t)=2t,
A5A6=(6-t)-(4+t)=2-2t,A6A7=(6+t)-(6-t)=2t,…,
A100A101=2t,
又∵y100=×1002+=
∴S100=×2t•=t;

(3)存在.
理由如下:若△A1B1A2為等腰直角三角形,則A1A2=2-2t=2×,
解得t=,
若△A2B2A3為等腰直角三角形,則A2A3=2t=2×,
解得t=
若△A3B3A4為等腰直角三角形,則A3A4=2-2t=2(+),
解得t=0,依次向右,t逐漸變小,
∵0<t<1,
∴t的值為時,所有等腰三角形中存在直角三角形.
點評:本題是二次函數(shù)的綜合題型,主要涉及待定系數(shù)法求二次函數(shù)解析式,等腰三角形三線合一的性質(zhì),以及規(guī)律探尋,(2)中求出等腰三角形底邊的變化規(guī)律是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標系中可能是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結(jié)論,并通過計算說明;
(3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標原點,拋物線上一點C的橫坐標為1.
(1)求A,B兩點的坐標;
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當△MNC的面積最大時,求點M、N的坐標;
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案