【題目】某公司生產(chǎn)兩種設(shè)備,已知每臺(tái)種設(shè)備的成本是種設(shè)備的15倍,公司若投入6萬元生產(chǎn)種設(shè)備,投人15萬元生產(chǎn)種設(shè)備,則可生產(chǎn)兩種設(shè)備共40臺(tái).請(qǐng)解答下列問題:

1兩種設(shè)備每臺(tái)的成本分別是多少萬元?

2)若兩種設(shè)備每臺(tái)的售價(jià)分別是5000元、9000元,公司決定生產(chǎn)兩種設(shè)備共50臺(tái),且其中種設(shè)備至少生產(chǎn)10臺(tái),計(jì)劃銷售后獲利不低于12萬元,請(qǐng)問采用哪種生產(chǎn)方案公司所獲利潤最大?并求出最大利潤.

【答案】(1)種設(shè)備每臺(tái)的成本是0.4萬元,種設(shè)備每臺(tái)的成本是0.6萬元;(2)公司生產(chǎn)10臺(tái)種設(shè)備,40臺(tái)種設(shè)備時(shí)所獲利潤最大,最大利潤為130000元.

【解析】

1)設(shè)A種設(shè)備每臺(tái)的成本是x萬元,B種設(shè)備每臺(tái)的成本是1.5x萬元.根據(jù)“數(shù)量=總價(jià)÷單價(jià)”結(jié)合“投入投入1.5萬元生產(chǎn)A種設(shè)備,3.75萬元生產(chǎn)B種設(shè)備,則可生產(chǎn)兩種設(shè)備共10臺(tái)”,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;

2)設(shè)公司獲得利潤為W元,A種設(shè)備生產(chǎn)a臺(tái),則B種設(shè)備生產(chǎn)(50a)臺(tái).根據(jù)銷售后獲利不低于12萬元且A種設(shè)備至少生產(chǎn)10臺(tái),即可得出關(guān)于a的一元一次不等式組,解之即可得出a的取值范圍,根據(jù)題意得出Wa的函數(shù)關(guān)系式,再根據(jù)一次函數(shù)的性質(zhì)解答即可.

解:(1)設(shè)種設(shè)備每臺(tái)的成本是萬元,則種設(shè)備每臺(tái)的成本是萬元.

根據(jù)題意,得,

解得

經(jīng)檢驗(yàn)是分式方程的解,

答:種設(shè)備每臺(tái)的成本是04萬元,種設(shè)備每臺(tái)的成本是06萬元.

2)設(shè)公司獲得的利潤為元,生產(chǎn)種設(shè)備臺(tái),則生產(chǎn)種設(shè)備臺(tái).

根根據(jù)題意,得

解得

,

,即

,

的增大而減小,

當(dāng)時(shí),所獲利潤最大,最大利潤為(元).

答:公司生產(chǎn)10臺(tái)種設(shè)備,40臺(tái)種設(shè)備時(shí)所獲利潤最大,最大利潤為130000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小瑩用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB8cmBC長為10cm.當(dāng)小瑩折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F(折痕為AE).則此時(shí)EC=(  )cm

A.4B.C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CBy,y軸負(fù)半軸于B(0,b),(a-3)2+|b+4|=0,S四邊形AOBC=16.

(1)求C點(diǎn)坐標(biāo);

(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)ADAC時(shí),ODA的角平分線與∠CAE的角平分線的反向延長線交于點(diǎn)P,求∠APD的度數(shù).

(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),DMADBCM點(diǎn),BMD、DAO的平分線交于N點(diǎn),D點(diǎn)在運(yùn)動(dòng)過程中,N的大小是否變化?若不變,求出其值,若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn) A﹣2,0),B2,0),C0,2,點(diǎn) D,點(diǎn)E分別是 AC,BC的中點(diǎn),將CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到CDE,及旋轉(zhuǎn)角為α,連接 AD,BE

1如圖,若 α90°,當(dāng) AD′∥CE時(shí),求α的大。

2如圖,若 90°α180°,當(dāng)點(diǎn) D落在線段 BE上時(shí),求 sin∠CBE的值;

3若直線AD與直線BE相交于點(diǎn)P,求點(diǎn)P的橫坐標(biāo)m的取值范圍直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)EG、H、F分別在AB、BC、CDAD上,且AF=CG=2BE=DH=1,點(diǎn)P是直線EF、GH之間任意一點(diǎn),連接PE、PFPG、PH,則圖中陰影面積(PEFPGH的面積和)等于( 。

A. 7 B. 8 C. 12 D. 14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建華小區(qū)準(zhǔn)備新建50個(gè)停車位,以解決小區(qū)停車難的問題.已知新建1個(gè)地上停車位和1個(gè)地下停車位需0.5萬元;新建3個(gè)地上停車位和2個(gè)地下停車位需1.1萬元.

1)該小區(qū)新建1個(gè)地上停車位和1個(gè)地下停車位各需多少萬元?

2)若該小區(qū)預(yù)計(jì)投資金額超過10萬元而不超過11萬元,則共有幾種建造方案?

3)已知每個(gè)地上停車位月租金100元,每個(gè)地下停車位月租金300. 在(2)的條件下,新建停車位全部租出.若該小區(qū)將第一個(gè)月租金收入中的3600元用于舊車位的維修,其余收入繼續(xù)興建新車位,恰好用完,請(qǐng)直接寫出該小區(qū)選擇的是哪種建造方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=60°CE為△ABC的角平分線,AC邊上的高BDCE所在的直線交于點(diǎn)F,若∠ABD:ACF=2:3,則∠BEC的度數(shù)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),平行四邊形ABCD的邊BC在x軸上,D點(diǎn)在y軸上,C點(diǎn)坐標(biāo)為(2,0),BC=6,BCD=60°,點(diǎn)E是AB上一點(diǎn),AE=3EB,P過D,O,C三點(diǎn),拋物線過點(diǎn)D,B,C三點(diǎn)

(1)求拋物線的解析式;

(2)求證:ED是P的切線;

(3)若將ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,E點(diǎn)的對(duì)應(yīng)點(diǎn)E′會(huì)落在拋物線上嗎?請(qǐng)說明理由;

(4)若點(diǎn)M為此拋物線的頂點(diǎn),平面上是否存在點(diǎn)N,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展了“手機(jī)伴我行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問卷調(diào)查,并繪制成圖①、圖②不完整的統(tǒng)計(jì)圖,已知問卷調(diào)查中“查資料”的人數(shù)是40人,條形統(tǒng)計(jì)圖中“01表示每周使用手機(jī)的時(shí)間大于0小時(shí)而小于或等于1小時(shí),以此類推.

1)本次問卷調(diào)查一共調(diào)查了多少名學(xué)生?

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)該校共有學(xué)生1200人,估計(jì)每周使用手機(jī)“玩游戲”是多少名學(xué)生?

查看答案和解析>>

同步練習(xí)冊(cè)答案