如圖,在平面直角坐標(biāo)中,矩形OABC,OA=4,AB=2,直線與坐標(biāo)軸交于D,E兩點,設(shè)M是AB的中點,P是線段DE上的動點.過P作PH⊥BC,垂足為H,當(dāng)以PM為直徑的⊙F與BC相切于點N時,梯形PMBH的面積是   
【答案】分析:可設(shè)P(x,y),連接PN、MN、NF,因為點P在y=-x+上,所以P(x,-x+),根據(jù)題意可得PN⊥MN,F(xiàn)N⊥BC,F(xiàn)是圓心,又因N是線段HB的中點,HN=NB=,PH=2-(-x+)=x+,BM=1,利用直徑對的圓周角是直角可得到∠HPN+∠HNP=∠HNP+∠BNM=90°,所以∠HPN=∠BNM,又因∠PHN=∠B=90°,所以可得到Rt△PNH∽Rt△NMB,所以=,∴=,這樣就可得到關(guān)于x的方程,解之即可求出x的值,而所求面積的四邊形是一個直角梯形,所以SPMBH===-+
解答:解:設(shè)P(x,y),連接PN、MN、NF,
∵點P在y=-x+上,
∴P(x,-x+),
依題意知:PN⊥MN,F(xiàn)N⊥BC,F(xiàn)是圓心,
∴N是線段HB的中點,HN=NB=,PH=2-(-x+)=x+,BM=1,
∵∠HPN+∠HNP=∠HNP+∠BNM=90°,
∴∠HPN=∠BNM,
又∵∠PHN=∠B=90°,
∴Rt△PNH∽Rt△NMB,
=,
=,
∴x2-12x+14=0,
解得:x=6+(x>舍去),x=6-,
SPMBH===-+
故答案為:-+
點評:考查了一次函數(shù)綜合題,本題屬于一道典型的數(shù)形結(jié)合的題目,需利用一次函數(shù)的解析式結(jié)合圓的相關(guān)知識才可以解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案