如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動的速度分別為1,,2 (長度單位/秒)﹒一直尺的上邊緣l從x軸的位置開始以 (長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.

請解答下列問題:

1.過A,B兩點的直線解析式是      ▲       

2.當t﹦4時,點P的坐標為    ▲    ;當t ﹦    ▲     ,點P與點E重合;

3.① 作點P關(guān)于直線EF的對稱點P′. 在運動過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?

② 當t﹦2時,是否存在著點Q,使得△FEQ ∽△BEP ?若存在, 求出點Q的坐標;若不存在,請說明理由.

 

 

1.;………4分

2.(0,),;……4分(各2分)

3.①當點在線段上時,過軸,為垂足(如圖1)

          ∵,,∠90°

         ∴△≌△,∴

又∵,∠60°,∴

         而,∴,

         由得  ;…………………1分

         當點P在線段上時,形成的是三角形,不存在菱形;

         當點P在線段上時,

過P作,,、分別為垂足(如圖2)

         ∵,∴,∴

         ∴, 又∵

         在Rt△中,

         即,解得.…………………………………………………1分

②存在﹒理由如下:

         ∵,∴,

將△繞點順時針方向旋轉(zhuǎn)90°,得到

(如圖3)

         ∵,∴點在直線上,

         C點坐標為(,-1)

         過,交于點Q,

則△∽△

         由,可得Q的坐標為(-)………………………1分

根據(jù)對稱性可得,Q關(guān)于直線EF的對稱點(-,)也符合條件.……1分

解析:(1)考查了待定系數(shù)法求一次函數(shù);

(2)此題要掌握點P的運動路線,要掌握點P在不同階段的運動速度,即可求得;

(3)①此題需要分三種情況分析:點P在線段OA上,在線段OB上,在線段AB上;根據(jù)菱形的判定可知:在線段EF的垂直平分線上與x軸的交點,可求的一個;當點P在線段OB上時,形成的是三角形,不存在菱形;當點P在線段BA上時,根據(jù)對角線互相平分且互相垂直的四邊形是菱形求得.

②當t﹦2時,可求的點P的坐標,即可確定△BEP,根據(jù)相似三角形的判定定理即可求得點Q的坐標,解題時要注意答案的不唯一性.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3
3
).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,
3
,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以
3
3
(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是
 
;
(2)當t﹦4時,點P的坐標為
 
;當t﹦
 
,點P與點E重合;
(3)①作點P關(guān)于直線EF的對稱點P′.在運動過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?
②當t﹦2時,是否存在著點Q,使得△FEQ∽△BEP?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:在直角三角形中,30°所對的直角邊是斜邊的一半.
如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為
(3,0)和(0,3
3
).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,
3
,2(單位長度/秒).一直尺的上邊緣l從x軸的位置開始以
3
3
(單位長度/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是
y=-
3
x+3
3
y=-
3
x+3
3
;
(2)當t﹦4時,點P的坐標為
(0,
3
(0,
3
;當t=
9
2
9
2
,點P與點E重合;
(3)作點P關(guān)于直線EF的對稱點P′.在運動過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省期中題 題型:填空題

閱讀材料:在直角三角形中,30°所對的直角邊是斜邊的一半.如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0, ).動點P從A點開始沿折線AO﹣OB﹣BA運動,點P在AO,OB,BA上運動的面四民﹒數(shù)學興趣小組對捐款情況進行了抽樣調(diào)查,速度分別為1, ,2(單位長度/秒).一直尺的上邊緣l從x軸的位置開始以 (單位長度/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO﹣OB﹣BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是_____________;
(2)當t﹦4時,點P的坐標為________________。划攖=____________   ,點P與點E重合;
(3)作點P關(guān)于直線EF的對稱點P′.在運動過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動的面四民﹒數(shù)學興趣小組對捐款情況進行了抽樣調(diào)查,速度分別為1,,2 (長度單位/秒)﹒一直尺的上邊緣l從x軸的位置開始以 (長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
【小題1】過A,B兩點的直線解析式是      ▲       
【小題2】當t﹦4時,點P的坐標為   ▲    ;當t ﹦   ▲    ,點P與點E重合;
【小題3】① 作點P關(guān)于直線EF的對稱點P′. 在運動過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?
② 當t﹦2時,是否存在著點Q,使得△FEQ ∽△BEP ?若存在, 求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東萊蕪) 題型:解答題

如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動的面四民﹒數(shù)學興趣小組對捐款情況進行了抽樣調(diào)查,速度分別為1,,2 (長度單位/秒)﹒一直尺的上邊緣l從x軸的位置開始以 (長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.

請解答下列問題:
(1)過A,B兩點的直線解析式是  ▲ ;
(2)當t﹦4時,點P的坐標為  ▲  ;當t ﹦  ▲  ,點P與點E重合;
(3)
① 作點P關(guān)于直線EF的對稱點P′. 在運動過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?
② 當t﹦2時,是否存在著點Q,使得△FEQ ∽△BEP ?若存在, 求出點Q的坐標;
若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案