如圖1,拋物線y=x2+x-4與y軸交于點A,E(0,b)為y軸上一動點,過點E的直線y=x+b與拋物線交于點B、C.
(1)求點A的坐標(biāo);
(2)當(dāng)b=0時(如圖2),求△ABE與△ACE的面積.
(3)當(dāng)b>-4時,△ABE與△ACE的面積大小關(guān)系如何?為什么?
(4)是否存在這樣的b,使得△BOC是以BC為斜邊的直角三角形?若存在,求出b;若不存在,說明理由.
精英家教網(wǎng)
分析:(1)將x=0,代入拋物線的解析式即可;
(2)當(dāng)b=0時,直線為y=x,解由y=x和y=x2+x-4組成的方程組即可求出B、C的坐標(biāo),再利用三角形的面積公式即可求出面積;
(3)當(dāng)b>-4時,△ABE與△ACE的面積相等,理由是解由直線和拋物線組成的方程組,即可求出交點的坐標(biāo),作BF⊥y軸,CG⊥y軸,垂足分別為F、G,根據(jù)點的坐標(biāo)得到△ABE和△ACE是同底的兩個三角形,即可得出答案;
(4)存在這樣的b,根據(jù)全等三角形的判定證△BEF≌△CEG,推出BE=CE,根據(jù)直角三角形的性質(zhì),當(dāng)OE=CE時,△OBC為直角三角形,代入即可求出b的值.
解答:解:(1)將x=0,代入拋物線的解析式得:y=-4,
得點A的坐標(biāo)為(0,-4),
答:點A的坐標(biāo)為(0,-4).

(2)當(dāng)b=0時,直線為y=x,
y=x
y=x2+x-4
,
解得
x1=2
y1=2
x2=-2
y2=-2
,
∴B、C的坐標(biāo)分別為B(-2,-2),C(2,2),
S△ABE=
1
2
×4×2=4
,S△ACE=
1
2
×4×2=4

答:△ABE的面積是4,△ACE的面積是4.

(3)當(dāng)b>-4時,S△ABE=S△ACE,
理由是:由
y=x+b
y=x2+x-4
,
解得
x1=
b+4
y1=
b+4
+b
,
x2=-
b+4
y2=-
b+4
+b
,
∴B、C的坐標(biāo)分別為:
B(-
b+4
,-
b+4
+b),C(
b+4
,
b+4
+b),
作BF⊥y軸,CG⊥y軸,垂足分別為F、G,
BF=CG=
b+4
,
而△ABE和△ACE是同底的兩個三角形,精英家教網(wǎng)
∴S△ABE=S△ACE.
答:當(dāng)b>-4時,△ABE與△ACE的面積大小關(guān)系是相等.

(4)存在這樣的b,
∵BF=CG,∠BEF=∠CEG,∠BFE=∠CGE=90°,
∴△BEF≌△CEG,
∴BE=CE,
即E為BC的中點,
所以當(dāng)OE=CE時,△OBC為直角三角形,
∵B(-
b+4
,-
b+4
+b),E(0,b),
∴GE=EF=|-(
b+4
+b)+b|=
b+4
=CG
GE=GC=
b+4
,
CE=
2
b+4
,而OE=|b|,
2
b+4
=|b|
,
解得b1=4,b2=-2,
∴當(dāng)b=4或-2時,△OBC為直角三角形,
答:存在這樣的b,使得△BOC是以BC為斜邊的直角三角形,b的值是4或-2.
點評:本題主要考查對二次函數(shù)圖象上點的坐標(biāo)特征,解二元一次方程組,三角形的面積,全等三角形的性質(zhì)和判定,直角三角形的性質(zhì)等知識點的理解和掌握,熟練地運用這些性質(zhì)進(jìn)行計算是解此題的關(guān)鍵,題型較好,綜合性強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)的圖象是經(jīng)過點A(1,0),B(3,0),E(0,6)三點的一條拋物線.
(1)求這條拋物線的解析式;
(2)如圖,設(shè)拋物線的頂點為C,對稱軸交x軸于點D,在y軸正半軸上有一點P,且以A、O、P為頂點的三角形與△ACD相似,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標(biāo)為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內(nèi))上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對稱軸分別交AB、x軸于點D、M,連接PA、PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
(4)在(2)的條件下,設(shè)P點的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請分別寫出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,矩形ABCD,點C與坐標(biāo)原點O重合,點A在x軸上,點B坐標(biāo)為(3,
3
),求經(jīng)過A、B、C三點拋物線的解析式;
(2)如圖2,拋物線E:y=-
1
2
x2+bx+c
經(jīng)過坐標(biāo)原點O,其頂點在y軸左側(cè),以O(shè)為頂點作矩形OADC,A、C為拋物線E上兩點,若AC∥x軸,AD=2CD,則拋物線的解析式是
 
;
(3)如圖3,點A、B、C分別為拋物線F:y=ax2+bx+c(a<0)上的點,點B在對稱軸右側(cè),點D在拋物線外,順次連接A、B、C、D四點,所成四邊形為矩形,且AC∥x軸,AD=2CD,求矩形ABCD的周長(用含a的式子表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經(jīng)過原點O和點A(6,0),平移后的拋物線的頂點為點B,對稱軸與拋物線y=-
1
2
x2
相交于點C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點坐標(biāo)為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內(nèi))上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)設(shè)點P是拋物線(第一象限內(nèi))上的一個動點,是否存在一點P,使S△PAB=S△CAB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案