【題目】先化簡(jiǎn),再求值:
(1)(x+2)2-(x+5)(x-5),其中x=。
(2)[(x+2y)2-(x+y)(3x-y)-5y2]÷2x,其中x=-2,y=。
【答案】(1)35;(2).
【解析】
試題分析:(1)先運(yùn)用完全平方公式和平方差公式把括號(hào)展開(kāi),再合并同類(lèi)項(xiàng),最后把x的值代入化簡(jiǎn)的結(jié)果中求值即可;
(2)(2)先運(yùn)用完全平方公式和多項(xiàng)式乘以多項(xiàng)式把括號(hào)內(nèi)的進(jìn)行化簡(jiǎn),然后再進(jìn)行除法運(yùn)算,最后把x的值供稿即可.
試題解析:(1)(x+2)2-(x+5)(x-5)
=x2+4x+4-x2+25
=4x+29
當(dāng)x=時(shí),原式=4×+29=6+29=35;
(2)[(x+2y)2-(x+y)(3x-y)-5y2]÷2x
=[x2+4xy+4y2-(3x2-xy+3xy-y2)-5y2]÷2x
=(x2+4xy+4y2-3x2+xy-3xy+y2-5y2)÷2x
=(-2x2+2xy) ÷2x
=-x+y
當(dāng)x=-2,y=時(shí),原式=-(-2)+=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0.000037 mg,已知1 g=1 000 mg,那么0.000 037 mg用科學(xué)記數(shù)法表示為( )
A. 3.7×10-5 g B. 3.7×10-6 g C. 3.7×10-7 g D. 3.7×10-8 g
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),AB∥CD,猜想∠BPD與∠B、∠D的關(guān)系,說(shuō)出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過(guò)點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線(xiàn)都和第三條直線(xiàn)平行,那么這兩條直線(xiàn)也互相平行.)
∴∠EPD+∠D=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,并說(shuō)明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,不需要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】宏遠(yuǎn)商貿(mào)公司有A、B兩種型號(hào)的商品需運(yùn)出,這兩種商品的體積和質(zhì)量分別如下表所示:
體積(m3/件) | 質(zhì)量(噸/件) | |
A型商品 | 0.8 | 0.5 |
B型商品 | 2 | 1 |
(1)已知一批商品有A、B兩種型號(hào),體積一共是20m3,質(zhì)量一共是10.5噸,求A、B兩種型號(hào)商品各有幾件?
(2)物流公司現(xiàn)有可供使用的貨車(chē)每輛額定載重3.5噸,容積為6m3,其收費(fèi)方式有以下兩種:
①按車(chē)收費(fèi):每輛車(chē)運(yùn)輸貨物到目的地收費(fèi)600元;
②按噸收費(fèi):每噸貨物運(yùn)輸?shù)侥康牡厥召M(fèi)200元.
要將(1)中的商品一次或分批運(yùn)輸?shù)侥康牡兀赀h(yuǎn)商貿(mào)公司應(yīng)如何選擇運(yùn)送、付費(fèi)方式運(yùn)費(fèi)最少并求出該方式下的運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a,b滿(mǎn)足a2-b2=10,則(a+b)3·(a-b)3的值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:(8a2b2﹣4ab3)÷4ab﹣(b+2a)(2a﹣b),其中a=﹣1,b=3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的對(duì)角線(xiàn)AC=12,∠ACO=30°
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)G()作GF⊥AC,垂足為F,直線(xiàn)GF分別交AB、OC于點(diǎn)E、D,求直線(xiàn)DE的解析式;
(3)在⑵的條件下,若點(diǎn)M在直線(xiàn)DE上,平面內(nèi)是否存在點(diǎn)P,使以O(shè)、F、M、P為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com