【題目】如圖,是的直徑,軸, 交于點(diǎn).
(1)若點(diǎn),求點(diǎn)的坐標(biāo);
(2)若為線段的中點(diǎn),求證:直線是的切線.
【答案】(1)(,2);(2)詳見解答.
【解析】
試題分析:(1)在直角三角形ABN中,求出BN的長(zhǎng),即可得到點(diǎn)B的坐標(biāo);(2)連接MC,NC,用等腰三角形的性質(zhì)證明∠MCD=∠MND.
試題解析:(1)∵A的坐標(biāo)為(0,6),N(0,2),∴AN=4,
∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,
∴由勾股定理可知:NB=,∴B(,2)
(2)連接MC,NC
∵AN是⊙M的直徑,∴∠ACN=90°,∴∠NCB=90°,
在Rt△NCB中,D為NB的中點(diǎn),
∴CD=NB=ND,∴∠CND=∠NCD,
∵MC=MN,∴∠MCN=∠MNC.
∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,
即MC⊥CD. ∴直線CD是⊙M的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘輪船以16海里/時(shí)的速度離開港口(如圖),向北偏東40°方向航行,另一艘輪船在同時(shí)以12海里/時(shí)的速度向北偏西一定的角度的航向行駛,已知它們離港口一個(gè)半小時(shí)后相距30海里(即BA=30),問另一艘輪船的航行的方向是北偏西多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO中,∠ABO=90°,其頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在第二象限,點(diǎn)A在x軸負(fù)半軸上.若BD⊥AO于點(diǎn)D,OB= ,AB=2 ,則點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+4與x軸、y軸分別交于點(diǎn)A,B,點(diǎn)C時(shí)線段AB上一點(diǎn),四邊形OADC是菱形,求OD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張厚度為0.1mm的紙對(duì)折8次后厚度接近于( )
A.0.8mm
B.2.6cm
C.2.6mm
D.0.18mm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的兩條對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E在BD上,且BE=CD,則∠BEC的度數(shù)為( )
A.22.5°
B.60°
C.67.5°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)數(shù)學(xué)史上最先完成勾股定理證明的數(shù)學(xué)家是公元3世紀(jì)三國(guó)時(shí)期的趙爽,他為了證明勾股定理,創(chuàng)制了一副”弦圖“,后人稱其為“趙爽弦圖”(如圖1).圖2由弦圖變化得到,它是由八個(gè)全等的直角三角形拼接而成.將圖中正方形MNKT,正方形EFGH,正方形ABCD的面積分別記為S1 , S2 , S3 , 若S1+S2+S3=18,則正方形EFGH的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com