(2012•攀枝花)底面半徑為1,高為
3
的圓錐的側(cè)面積等于
分析:由于高線,底面的半徑,母線正好組成直角三角形,故母線長可由勾股定理求得,再由圓錐側(cè)面積=
1
2
底面周長×母線長計(jì)算.
解答:解:∵高線長為
3
,底面的半徑是1,
∴由勾股定理知:母線長=
(
3
)
2
+1
=2,
∴圓錐側(cè)面積=
1
2
底面周長×母線長=
1
2
×2π×2=2π.
故答案為:2π.
點(diǎn)評:本題考查圓錐的側(cè)面積表達(dá)公式應(yīng)用,需注意應(yīng)先算出母線長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•攀枝花)如圖,在平面直角坐標(biāo)系xOy中,四邊形ABCD是菱形,頂點(diǎn)A、C、D均在坐標(biāo)軸上,且AB=5,sinB=
45

(1)求過A、C、D三點(diǎn)的拋物線的解析式;
(2)記直線AB的解析式為y1=mx+n,(1)中拋物線的解析式為y2=ax2+bx+c,求當(dāng)y1<y2時,自變量x的取值范圍;
(3)設(shè)直線AB與(1)中拋物線的另一個交點(diǎn)為E,P點(diǎn)為拋物線上A、E兩點(diǎn)之間的一個動點(diǎn),當(dāng)P點(diǎn)在何處時,△PAE的面積最大?并求出面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•攀枝花)先化簡,再求值:(x+1-
3
x-1
x2-4x+4
x-1
,其中x滿足方程:x2+x-6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•攀枝花)下列說法中,錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•攀枝花)某學(xué)校為了解八年級學(xué)生的課外閱讀情況,鐘老師隨機(jī)抽查部分學(xué)生,并對其暑假期間的課外閱讀量進(jìn)行統(tǒng)計(jì)分析,繪制成如圖所示,但不完整的統(tǒng)計(jì)圖.根據(jù)圖示信息,解答下列問題:

(1)求被抽查學(xué)生人數(shù)及課外閱讀量的眾數(shù);
(2)求扇形統(tǒng)計(jì)圖匯總的a、b值;
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若規(guī)定:假期閱讀3本以上(含3本)課外書籍者為完成假期作業(yè),據(jù)此估計(jì)該校600名學(xué)生中,完成假期作業(yè)的有多少人?

查看答案和解析>>

同步練習(xí)冊答案