【題目】如圖(1),在平面直角坐標(biāo)系中,直線y=-x+my軸于點(diǎn)A,交x軸于點(diǎn)B,點(diǎn)COB的中點(diǎn),作C關(guān)于直線AB的對(duì)稱點(diǎn)F,連接BFOF,OFAC于點(diǎn)E,交AB于點(diǎn)M

1)直接寫出點(diǎn)F的坐標(biāo)(用m表示);

2)求證:OFAC;

3)如圖(2),若m=2,點(diǎn)G的坐標(biāo)為(-,0),過G點(diǎn)的直線GPy=kx+bk≠0)與直線AB始終相交于第一象限;

①求k的取值范圍;

②如圖(3),若直線GP經(jīng)過點(diǎn)M,過點(diǎn)MGM的垂線交FB的延長(zhǎng)線于點(diǎn)D,在平面內(nèi)是否存在點(diǎn)Q,使四邊形DMGQ為正方形?如果存在,請(qǐng)求出Q點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

【答案】(1)(m,m)(2)見解析(3)①0k6②(,-

【解析】

1CF⊥AB,CR=FR,則∠RCB=45°,則RC=RB=RF,∠RBF=45°,即FB⊥x軸,即可求解;

2)證明△AOC≌△OBFHL),即可求解;

3將點(diǎn)(-,0)代入y=kx+b即可求解;求出點(diǎn)D2,-1),證明△MNG≌△MHDHL),即可求解.

解:(1y=-x+m,令x=0,則y=m,令y=0,則x=m,則∠ABO=45°,

故點(diǎn)A、B的坐標(biāo)分別為:(0m)、(m,0),則點(diǎn)Cm,0),

如圖(1)作點(diǎn)C的對(duì)稱軸FAB于點(diǎn)R,則CF⊥AB,CR=FR,

∠RCB=45°,則RC=RB=RF

∴∠RBF=45°,即FB⊥x軸,

故點(diǎn)Fm,m);

2∵OC=BF=m,OB=OA,

∴△AOC≌△OBFHL),

∴∠OAC=∠FOB,

∵∠OAC+∠AOE=90°,

∴∠OAC+∠AOE=90°

∴∠AEO=90°,

∴OF⊥AC;

3將點(diǎn)(-,0)代入y=kx+b得:

,解得:,

由一次函數(shù)圖象知:k0,

交點(diǎn)在第一象限,則

解得:0k6;

存在,理由:

直線OF的表達(dá)式為:y=x,直線AB的表達(dá)式為:y=-x+2,

聯(lián)立上述兩個(gè)表達(dá)式并解得:x=,故點(diǎn)M,),

直線GM所在函數(shù)表達(dá)式中的k值為:,則直線MD所在直線函數(shù)表達(dá)式中的k值為-,

將點(diǎn)M坐標(biāo)和直線DM表達(dá)式中的k值代入一次函數(shù)表達(dá)式并解得:

直線DM的表達(dá)式為:y=-x+4,故點(diǎn)D2,-1),

過點(diǎn)Mx軸的垂線于點(diǎn)N,作x軸的平行線交過點(diǎn)Gy軸的平行線于點(diǎn)S

過點(diǎn)Gy軸的平行線交過點(diǎn)Qx軸的平行線于點(diǎn)T,

∴△MNG≌△MHDHL),

∴MD=MG,

△GTQ≌△MSG,則GT=MS=GN=,TQ=SG=MN=

故點(diǎn)Q,-).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長(zhǎng)分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國(guó)市制長(zhǎng)度單位,1=500米,則該沙田的面積為( 。

A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC

其中正確的是(  。

A. ①②③④ B. ②③ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個(gè)幾何體的小正方體的個(gè)數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級(jí)開展社會(huì)主義核心價(jià)值觀演講比賽活動(dòng),九(1)班、九(2)班根據(jù)初賽成績(jī)各選出5名選手參加復(fù)賽,兩個(gè)班各選出5名選手的復(fù)賽成績(jī)(滿分100分)如圖所示.

根據(jù)圖中數(shù)據(jù)解決下列問題:

1)九(1)班復(fù)賽成績(jī)的眾數(shù)是 分,九(2)班復(fù)賽成績(jī)的中位數(shù)是 分;

2)請(qǐng)你求出九(1)班和九(2)班復(fù)賽的平均成績(jī)和方差,并說明哪個(gè)班的成績(jī)更穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律:將連續(xù)的偶24,68,,排成如表:

1)請(qǐng)你求出十字框中的五個(gè)數(shù)的和;

2)設(shè)中間的數(shù)為x,請(qǐng)你用含x的式子表示十字框中的五個(gè)數(shù)的和;

3)若將十字框上下左右移動(dòng),可框住另外的五個(gè)數(shù),這五個(gè)數(shù)的和能等于2018嗎?如能,寫出這五個(gè)數(shù),如不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是梯形,ADBC,ACBD,且ACBD,如果梯形ABCD的中位線長(zhǎng)是5,那么這個(gè)梯形的高AH___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠AOC65°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE90°)

1)如圖,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   ;

2)如圖,將直角三角板DOE繞點(diǎn)O順時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠AOE,求∠COD的度數(shù);

3)如圖,將直角三角板DOE繞點(diǎn)O任意轉(zhuǎn)動(dòng),如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

(1)求y與x之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式(利潤(rùn)=收入﹣成本),并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案