【題目】設(shè)m是不小于﹣1的實(shí)數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,
(1)若x12+x22=6,求m值;
(2)令T=,求T的取值范圍.
【答案】(1)m=;(2)0<T≤4且T≠2.
【解析】
由方程方程由兩個(gè)不相等的實(shí)數(shù)根求得﹣1≤m<1,根據(jù)根與系數(shù)的關(guān)系可得x1+x2=4﹣2m,x1x2=m2﹣3m+3;(1)把x12+x22=6化為(x1+x2)2﹣2x1x2=6,代入解方程求得m的值,根據(jù)﹣1≤m<1對(duì)方程的解進(jìn)行取舍;(2)把T化簡(jiǎn)為2﹣2m,結(jié)合﹣1≤m<1且m≠0即可求T得取值范圍.
∵方程由兩個(gè)不相等的實(shí)數(shù)根,
所以△=[2(m﹣2)]2﹣4(m2﹣3m+3)
=﹣4m+4>0,
所以m<1,又∵m是不小于﹣1的實(shí)數(shù),
∴﹣1≤m<1
∴x1+x2=﹣2(m﹣2)=4﹣2m,x1x2=m2﹣3m+3;
(1)∵x12+x22=6,
∴(x1+x2)2﹣2x1x2=6,
即(4﹣2m)2﹣2(m2﹣3m+3)=6
整理,得m2﹣5m+2=0
解得m=;
∵﹣1≤m<1
所以m=.
(2)T=+
=
=
=
=
=2﹣2m.
∵﹣1≤m<1且m≠0
所以0<2﹣2m≤4且m≠0
即0<T≤4且T≠2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,的平分線與的垂直平分線交于點(diǎn),將沿(在上,在上)折疊,點(diǎn)與點(diǎn)恰好重合,則____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=(t+1)x2+2(t+2)x+在x=0和x=2時(shí)的函數(shù)值相等
(1)求二次函數(shù)的解析式,并作圖象;
(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的象都經(jīng)過(guò)點(diǎn)A(﹣3,m),求m和k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的七邊形ABCDEFG中,∠1、∠2、∠3、∠4 四個(gè)角的外角和為180°,∠5 的外角為60°,BP、DP 分別平分∠ABC、∠CDE,則∠BPD 的度數(shù)是( 。
A. 130° B. 120° C. 110° D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)C、B,與直線相交于點(diǎn)A.
(1)求A點(diǎn)坐標(biāo);
(2)如果在y軸上存在一點(diǎn)P,使△OAP是以O(shè)A為底邊的等腰三角形,求P點(diǎn)坐標(biāo);
(3)在直線上是否存在點(diǎn)Q,使△OAQ的面積等于6?若存在,請(qǐng)求出Q點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,分別以AB,AC為直角邊向外作等腰直角△ABD和等腰直角△ACE,G為BD的中點(diǎn),連接CG,BE,CD,BE與CD交于點(diǎn)F.
(1)判斷四邊形ACGD的形狀,并說(shuō)明理由.
(2)求證:BE=CD,BE⊥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰和等腰中,,,連接交于點(diǎn).
(1)如圖1,若:
①與的數(shù)量關(guān)系為 ;
②的度數(shù)為 ;
圖1
(2)如圖2,若:
圖2
①判斷與之間存在怎樣的數(shù)量關(guān)系?并說(shuō)明理由;
②求的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線y=﹣x+4和點(diǎn)M(3,2)
(1)判斷點(diǎn)M是否在直線y=﹣x+4上,并說(shuō)明理由;
(2)將直線y=﹣x+4沿y軸平移,當(dāng)它經(jīng)過(guò)M關(guān)于坐標(biāo)軸的對(duì)稱點(diǎn)時(shí),求平移的距離;
(3)另一條直線y=kx+b經(jīng)過(guò)點(diǎn)M且與直線y=﹣x+4交點(diǎn)的橫坐標(biāo)為n,當(dāng)y=kx+b隨x的增大而增大時(shí),則n取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為“格點(diǎn)多邊形”.
⑴ 在圖1中畫(huà)一個(gè)格點(diǎn)正方形,使得該正方形的面積為13;
⑵ 在圖2中畫(huà)出格點(diǎn)D,使四邊形ABCD為軸對(duì)稱圖形;
⑶ 在圖3中畫(huà)出格點(diǎn)G、H,使得點(diǎn)E、F、G、H為頂點(diǎn)的四邊形是軸對(duì)稱圖形,有且只有一個(gè)內(nèi)角為直角.(畫(huà)出一個(gè)即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com