【題目】為了促進(jìn)各科均衡發(fā)展,學(xué)校準(zhǔn)備在九年級下期開設(shè)四科補(bǔ)短班,分別是英語、數(shù)學(xué)、物理和化學(xué).為提前了解同學(xué)們最想?yún)⒓拥目颇,學(xué)校在開學(xué)前采用隨機(jī)抽樣方式進(jìn)行了調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計圖中,“英語”所在扇形的圓心角度數(shù)是 ,并補(bǔ)全條形統(tǒng)計圖;
(2)在被調(diào)查的學(xué)生中,選擇化學(xué)的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)參加學(xué)科座談會,請用畫樹狀圖或列表的方法求出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
【答案】(1)108°;補(bǔ)圖見解析;(2)
【解析】
(1)根據(jù)數(shù)學(xué)的人數(shù)和所占的百分比求出總?cè)藬?shù),乘以物理所占的百分比求出物理的人數(shù),再用總?cè)藬?shù)減去其它人數(shù)求出化學(xué)的人數(shù),從而補(bǔ)全統(tǒng)計圖;用360°乘以“英語”所占的百分比即可得出英語所在扇形的圓心角的度數(shù);
(2)根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的情況數(shù),然后根據(jù)概率公式即可得出答案.
(1)從條形統(tǒng)計圖中知數(shù)學(xué)的人數(shù)為20人,從扇形統(tǒng)計圖中知數(shù)學(xué)所占的百分比為40%,
∴抽取的總學(xué)生數(shù)是:20÷40%=50(人),
物理人數(shù)有:50×20%=10(人),
化學(xué)人數(shù)有:50﹣15﹣20﹣10=5(人),
“英語”所在扇形的圓心角度數(shù)是;
補(bǔ)全條形統(tǒng)計圖如下:
故答案為:108°;
(2)共有5名同學(xué)學(xué)化學(xué),根據(jù)題意畫圖如下:
共有20種等情況數(shù),其中抽取的同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的有12種,
所以所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(5,0)、C(0,﹣5)三點.
(1)求拋物線的解析式和頂點坐標(biāo);
(2)當(dāng)0<x<5時,y的取值范圍為 ;
(3)點P為拋物線上一點,若S△PAB=21,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時,可以通過閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸負(fù)半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點E.
(1)求拋物線的解析式;
(2)若拋物線與x軸正半軸交于點F,設(shè)點D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標(biāo);如果不存在,請說明理由.
(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)、兩種商品,購買1個商品比購買1個商品多花10元,并且花費300元購買商品和花費100元購買商品的數(shù)量相等.
(1)求購買一個商品和一個商品各需要多少元;
(2)商店準(zhǔn)備購買、兩種商品共80個,若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點坐標(biāo)為軸上點,將線段繞著點順時針旋轉(zhuǎn)得到,過點作直線軸于,過點作直線于.
(1)當(dāng)點是的中點時,求直線的函數(shù)表達(dá)式.
(2)當(dāng)時,求的面積.
(3)在直線上是否存在點,使得?若存在,試用的代數(shù)式表示點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將如圖所示的牌面數(shù)字1、2、3、4的四張撲克牌背面朝上,洗勻后放在桌面上.
(1)從中隨機(jī)抽出一張牌,牌面數(shù)字是奇數(shù)的概率是 ;
(2)從中隨機(jī)抽出兩張牌,兩張牌牌面數(shù)字的和是6的概率是 ;
(3)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個位上的數(shù)字,請用樹狀圖或列表的方法求組成的兩位數(shù)恰好是3的倍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AC:y=x+8與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c過點A,C,且與x軸的另一交點為B,又點P是拋物線的對稱軸l上一動點.若△PAC周長的最小值為10+2,則拋物線的解析式為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com